UNCLASSIFIED

AD NUMBER

ADB101693

LIMITATION CHANGES

TO:

Approved for public release; distribution is
unlimted.

FROM:

Distribution authorized to U S. Gov't. agencies
and their contractors; Critical Technol ogy; FEB
1986. Ot her requests shall be referred to Rone

Air Devel opnent Center, Giffiss AFB, NY 13441-

5700. This docunent contains export-controll ed
t echni cal dat a.

AUTHORITY

RADC Itr 7 Jan 1988

THISPAGE ISUNCLASSIFIED

4

Ry o e B a0 o

RADC-TR-85-239
Final Technical Report
February 1986

AD-B101 693

VISIBLE LANGUAGES FOR PROGRAM
VISUALIZATION

Sponsored by
Defense Advanced Research Projects Agency (DOD)
ARPA Order No. 4469

Dr. Ronald Baecker, Aaron Marcus, Michaei Arent, Tracy Tims
and Allen Mcintosh

DISTRIBUTION LIMITED T0 U.S. GOVERNMENT AGENCIES AND THEIR CONTRACTORS, CRITICAL
TECHNOLOBY, Feb 86. OTHER REQUESTS FOR THIS DOCUMENT SHALL BE REFERRED T0 RADC (COEE),
GRIFFISS AFB, NY 13441-5700.

INFORMATION SUBJECT TO EXPORT CONTROL LAWS

This document may contain information subject to the International

Tratfic In Arms Regulation (ITAR) or the Export Administration

Regulation (EAR) of 1979 which may not be exported, released, or

disclosed to foreign nationals inside or outside the United States
B without first obtaining an export license. A violation of the ITAR or
C. EAR may be subject to a penalty of up to 10 years imprisonment and a
&< tine of $100,000 under 22 U.S.C. 2778 or Section 2410 of the Export

Administration Act of 1979. Include this notice with any reproduced
ty; Portion of this document.

LT .
L The views and conciusions contained in this document are those of the authors and
should not be interpreted as necessarliy representing the official poiicies, either

o, expressed or implied, of the Defense Advanced Research Projects Agency or the

"l U.S. Government. |

F—

== /

ROME AIR DEVELOPMENT CENTER % /3

Air Force Systems Command
Griffiss Air Force Base, NY 13441-5700

365

sk - 2 .
PR T T DUUR S SO N W DVRC I SN TVOT DU DR T W U TR T WSO e

g .
WD TN U0 Sl e §

RADC-TR-85-239 has been reviewed and is approved for publicationm.

Sy
APPROVED: 1 {"/‘[(,[/“,W(b C[’VLMO UVLLV\

ANDREW J. CRUSCICKI
Project Engineer

/] a
APPROVED: Vi g o~
RAYMOND P, URTZ, JR.
Technical Director
Command and Control Division

FOR THE COMMANDER: Q;&m.x& W’QM

RICHARD W. POULIOT
Plans and Programs Division

DESTRUCTION NOTICE - For classified documents, follow the procedures in
DOD 5200.22-M, Industrial Security Manual, Section II-19 or DOD 5200.1-R,
Information Security Program Regulation, Chapter IX. For unclassified,
limited documents, destroy by any method that will prevent disclosure of
contents or reconstruction of the document.

If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organization,
please notify RADC (COEE) Griffiss AFB NY 13441-5700. This will assist us in
maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or notices
on a specific document requires that it be returned.

b 2 'A'- s s ‘s L £ » PN ST~ - - Fg— » s s ——— PR 1
L A NP PO WG TELT S WA e S S i N T) ol -

- A A a_s

ML RSN S

ST W eV

RIS S T e
O g i

» %
PREY

VISIBLE LANGUAGES FOR PROGRAM
VISUALIZATION

Contractors: Human Computing Resources Corp.
Aaron Marcus and Associlates
Contract Number: F30602-83-C-0173
Effective Date of Contract: 20 October 1982
Contract Expiration Date: 30 September 1985
Short Title of Work: Program Visualization
Program Code Number: 4D30
Period of Work Covered: September 1982 - September 1985

Principal Investigator: Dr. Ronald Baecker
Phone Number: (416) 922-1937

RADC Project Engineer: Andrew Chruscicki
Phone Number: (315) 330-4063

Distribution limited to U.S. Government agencies and their
contractors; critical technology, Feb 86. Other requests for
this document shall be referred to RADC (COEE) Griffiss AFB
13441-5700. (

This research was supported by the Defense Advanced Research
Projects Agency of the Department of Defense and was monitored
by Andrew J. Chruscicki (COEE) Griffiss AFB NY 13441-5700, under
Contract F30602-83-C-0173.

rotie v

ADB 101673

REPORT DOCUMENTATION PAGE

Ta. T SECURITY CLASSIFICATION 6. RESTRICTIVE MARKINGS
N/A
UPITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION / AVAILABILITY OF REPORT

; USGO agencies and their contractors; critical
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE technology; Feb 86. Other requests
WW
4 PE ING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)
N/A RADC-TR-85-239

2. NAME OF PERFORMING ORGANIZATION b, OFFICE SYMBOL | 7a. NAME OF MONITORING ORGANIZATION
HCRC* Aaron Marcus Associates| (f applicable) Rome Air Development Center (COEE)

6¢c. ADDRESS (City, State, and 2iP Code) 7b. ADDRESS (City, State, and ZIP Code)
10 St. Mary Street 1196 Euclid Avenue Griffiss AFB NY 13441-5700
Toronto Ontario Berkeley CA 94706
9
82. NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL | 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION nefense Advanced (If applicable)
Research Projects Agency IPTO F30602-82-C-0173
8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
1400 Wilson Blvd [PROGRAM] PROJECT TASK WORK UNIT
Arlington VA 22209 ELEMENT NO. INO. NO. ACCESSION NO.
61101E D469 01 02

1, TITLE (include Security Cla.lliﬁntion)
VISIBLE LANGUAGES FOR PROGRAM VISUALIZATION

12. PERSONAL AUTHOR(S)
Dr. Ronald Baecker, Aaron Marcus, Michael Arent, Tracy Tims, Allen Mcintosh

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) ‘rs‘ PAGE COUNT

Final FROM _Sep 82 T0 Sep 85 February 1986

16. SUPPLEMENTARY NOTATION
*Human Computing Resources Corp.

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Program Visualization
02 15 ~PSoftware Maintenance’ e
7 |Pretty Printing, / eEny

19. ABSTRACT (Continue on reverse if ngcessary and identify by block number)

This report summarizes research to enhance the legibility and readability of C source text.
Several practical results are presented. A graphic design manual documents a graphic design
schema for the appearance of C source text. It is shown that-many of the recommendations
for C can be transferred to other languages, such as PASCAL and Ada. A prototype tool,
called the SEE compiler, was developed for generating automatically improved appearance for
most C programs. A prototype program book, that uniquely 1dent:lf1es the m;tu:e of informa-
tion necessary to maintain a program, is also developed. £

M Ad

20. DISTRIBUTION / AVAILABILITY OF ABSTRACT
CJUNCLASSIFIEDAUNLIMITED SAME AS RPT. [] DTIC USERS

21 ABSTRACT SECURITY CLASSIFICATION
IFIED

prrrem s e ————
22s., NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) | 22¢. OFFICE SYMBOL

lndrev J. Chruscicki (315) 330-4065 RADC (COEE)

DD FORM 1473, 84 Mar 83 APR edition may be used until exhausted
All other editions are obsolete.

SECURITY CLASSIFICATION OF THIS PAGE
UNCLASSIFIED

ot Rl B R U b el BB A b e
mkb\._«. OSRNG0 it St R 8010008 8 A A b Mo b 002 A 2t et ot 12 1 0t 30 98 s 0w,
8

Prograin Visualization Project Final Report: Page iii

Hue2a Compuring Resources Theory, Results,

Aottt Marcus oud Associates Conclusions
Acknowledgments

T i — S R

Human Computing Resources Corporation (HCR) and Aaron
Marcus and Associates (AM+A) carried out the program visualiza-
tion research and prepared this final report.

Ron Baecker, Chairman of the Board of HCR, and Aaron Marcus,
Principal of AM+A, were co-principal investigators, conceptualiz-
ing, structuring, and supervising the research. Michael Arent,
Design Director of AM+A, played a key role throughout the
research and in the development of the C language specifications
and the preparation of the report. Baecker, Marcus and Arent did
the conceptual work on prototype visualizations for the C language,
and were assisted in their preparation by Bruce Browne, Designer
at AM+A and John Longarini, programmer at HCR. Paul Breslin,
Longarini, Allen McIntosh, Chris Sturgess, and Tracy Tims, pro-
grammers at HCR, wrote the software that enabled C programs to
be compiled and displayed automatically in the manner recom-
mended by the manual. David Slocombe, President, Soft Quad, Inc.,
Toronto, also contributed software development under contract to
HCR. Baecker was the primary author of the buik of the report,
with significant collaboration from Marcus, Arent, Tims, and Mcln-
tosh.

The US Defense Department’s Advanced Research Projects
Agency, System Sciences Division, funded this project under ARPA
Order 4469. We are indebted to Craig Fields, Clint Kelly, and
Steve Squires of DARPA and Andrew Chruscicki of the Rome Air
Development Center for their support.

We are particularly grateful to Michael, John, and Tracy for the
extraordinarily long hours they spent in the final stages of compiet-
ing this final report. We should aiso like to thank a number of indi-
viduals, Lu-anne Lee, Barb Mcl atchie, Janice Herrington, and
Karyn Baecker, who assisted in the compilation and preparation of
the report.

"THIS MATERIAL MAY BE REPRODUCED BY OF. FOR THE U.S. GOVERNMENT
PURSUANT TO THE COPYRICHT LICENSE UNDER DAR 7-104.9(a)."

. .u-‘_\ :p O . N B . i |
0 R el e A L e 2 Pt - il T h s ~

s N W AP SRR S i e ol P M SR

ARSI A AR LS | O s,

.
.

'
i
a

(R

N |

" -
L —————p e P P SR LT SRS SR AP VAR

Program Visualization Project
Human Computing Resources
Naian Marcus and Associates

Final Report
Thcory,. Resu
Conclusions

Page iv

Preface

When you make a thing, a thing
that is new, it is so complicated
making it

that it is bound to be ugly.

But those that make it after you,

they don’t have to worry

about making it.

And they can make it pretty, and
so everybody can like it

when the others

make it after you.

Picasso (as quoted by Gertrude Stein):

[From Victor Papanek (1982), Design for the Real World,
London: Granada Publishing, p. 131.]

. . -.l.
oA e] Y 4 % Y
e ‘.h-_.._ -~

o g LoV
20 it e T e

PG A W T A

Program Visualization Project
Hummzn Computing Rascurces
Asiim fAA Lus and Assoviates

Final Repon
Theory, Results.
Conclusions

Table of Contents

Chapter 1: Introduction

Our Approach

Programs as Publications

The Goal of Our Research
Methodology of Our Research

The Final Report and the Deliverables

Chapter 2: An Example of the Design of Program Appearance

Chapter 3: C Program Books

Secondary Text: Front Matter

Tertiary Text: User Documentation

Primary Text: The Program

Secondary Text: Metadata and Commentaries
Tertiary Text: Indices and Overviews

Tertiary Text: Programmer Documentation
Chapter 4: Graphic Design of C Source Code and Comments
The Presentation of Program Metadata

The Spatial Composition of Comments

The Typography of Punctuation

Typographic Encodings of Token Attributes
The Presentation of Preprocessor Commands
The Presentation of Declarations

The Visual Parsing of Expressions

The Visual Parsing of Statements

The Presentation of Function Definitions
The Presentation of Program Structure

Chapter 5: Conclusions 'mon I"or

NTIS GRAZI
DTIC TAB
Unannounced
Justifica t

ST
By
pDistributi
_—Avail:ﬂ ility Ccdes
e Avail and/or
Special

Chapter 6: Future Research

X

ion— ———d

Appendix A: Bibliography

n/

N

=

5H

L
A ——— e - - o m——— = e e
& Program Visvalizaiion Troject Fina! Report: Page vi
N Himaa Computing Rescurces Thearw. Results,
: Aarae Marcys and 2ssoniates Loncivsions
a
4 . °
3 . L1st of Figures
-{: T | N S T " il e T WA, T, T
\1
15 A listing of a simple desk calculator program produced on a dot

matrix line printer
19 A listing of the desk calculator program produced on a laser printer
23 The desk calculator program produced on a laser printer using the
SEE program visualizer
29 The structure of a program book

CAE B

Program Visualizatior Project
Fuman Computiag Kesnurses
“aran Marcus o6 Assoriates

Final Report Chapter 1:
Thoary, Results. Introduction
Tonclusions

Chapter 1

Introduction

The continuous and spectacular development of computer hard-
ware that has occurred over the past four decades has finally
been matched in recent years with corresponding advances in
software engineering, that is, in the technology and processes of
software development.

Typically, efforts have been made on a number of fronts. The
most widespread development has been the concern with the logi-
cal structure and expressive style of programs. Out of this con-
cern have emerged many of the modern software development
techniques, including top-down design and stepwise refinement
[Wirth, 1971], structured programming [Dahl, Dijkstra & Hoare,
1972]. modularity [Parnas, 1972], and software tools [Kernighan
& Plauger, 1976). A second development has been the marked
improvement in the clarity and expressive power of programming
languages, as can be seen for example in Modula [Wirth, 1977].
Another kind of development has occurred in the organization
and management of the team that produces the writing. This has
given rise, for example, to the concepts of chief programmer
teams [Baker, 1972] and structured walkthroughs [Yourdon, 1979].

The above advances have not been aided by progress in interac-
tive computer graphics, but some other areas have benefited. It is
now possible to construct interactive editors for various graphic
notations that express algorithms and data structures, for

example, Nassi-Schneiderman diagrams [Nassi & Schneiderman,
1973], Warmier-Orr diagrams [Higgins, 1979], contour diagrams
[Organick & Thomas, 1974], and SADT diagrams [Ross, 1977]. (See
[Martin & McClure, 1985] for a recent survey of these diagramming
schemes and notations.) Even more significant is the increasing
interest in enhancing the technology to support the writing and
maintaining of good programs by .roviding, for example, integrated
software development environments [Wasserman, 1981] such as
INTERLISP [Teitelman, 1979] and high-performance personal works-
tations specialized to the task of program development [Gutz,
Wasserman & Spier, 1981].

How have these developments improved the daily life of most pro-
grammers? Almost all have benefited from the use of modemn pro-
gramming languages. On the other hand, the impact of new
software development methodologies, programmer team organiza-
tions, graphic diagramming notations, and sophisticated

.
3 '
Y T e
T
o .

o
[ST
e

_.‘;

s N g Ay Ay

.
[AN

2o e
s o _B_8 s

P

MRS SR

L are ke R R s

Program Visualizanon Project
Human Computing Resources
A= n=~ Marcus and Associates

Final Report: Chapter 1: Page 2
Theory. Results, Introduction
Conclusions

programmer development environments has been limited for the
most part to those working in research laboratories and in large
corporate programming shops. Significant assistance has not yet
been avaiiable to the lone programmer or small programming
group who typically work in BASIC or C on systems of moderate
complexity.

Lol B
3 .
.

T}

P ST
e i >

Program Visualization Proje~
Human Computing Resources
Aaron Marcus and Associates

Final Report: Chapter I: Section 1.1: Page 3
Theory. Results. Introduction Our Approach
Conclusions

Section 1.1
P —

Our Approach

We have taken a different approach in our recent work [Marcus
& Baecker, 1982; Baecker & Marcus, 1983]. We focused on every
programmer’s vehicle of discourse: the program, expressed in
some computer language and appearing in some form on some
physical medium.

Since the advent of programming, the technologies of the video
display terminal and the line printer have limited the presentation
of a computer program’s source code and comments to the use of a
single type font, at a single point size, with fixed-width charac-
ters, and sometimes without even the use of upper and lower case.
The technologies of high resolution bit-mapped displays. laser
printers. and computer-driven phototypesetters, on the other hand,
allow for the production of far richer representations, embodying
multiple fonts, non-alphanumeric symbols, variable point sizes,
variable character widths, proportional character spacing, variable
word spacing and line spacing, gray scale tints, rules, and arbi-
trary spatial location and orientation of elements ori a page. We
therefore explore systematically in our work how these capabili-
ties can be used to enhance the art of program presentation.

Our work thus encompasses the field of prettyprinting, an area in
which others before us have worked with more limited graphics
tools. The earliest work was done on LISP, so that program readers
would not drown in a sea of parentheses. The problems of pretty-
printing PASCAL have elicited a long correspondence in the ACM
SIGPLAN notices [Hueras & Ledgard. 1977; Grogono. 1979; Gustaf-
son, 1979; Leinbaugh. 1980]. A discussion of prettyprinting algo-
rithms and their complexity has appeared [Oppen, 1980]. Other
authors [Rose & Welsh, 1977; Rubin, 1983] demonstrated methods
of extending the syntactic descriptions of programming languages to
include their formatting conventions. One paper [Miara. Mussel-
man, Navarro & Schneiderman, 1983] includes a review of a num-
ber of human factors experiments concerning the effect of program
indentation on program comprehensibility. Unfortunately, these
experiments have generally failed to provide experimental confir-
mation of what every programmer knows: a program’s appearance
dramatically effects its comprehensibility and useability.

Our work however goes significantly beyond suggesting recom-
mended conventions for appearance that enhance the prettyprinting
of program code. We have also developed a flexible tool with

."I

el B Y56 T

P
00, 80 0]

A S

7 S i
o, e

*
.l >

P .
DY

T e

ey SR

Program Visualization Project
Human Computing Resources
Azron Marcus and Associates

Final Report: Chapter 1. Section 1.1: Page 4
Theory, Results, Introduction Our Approach
Conclusions

which future programmers and human factors specialists may
tune and improve these conventions, thus paving the way for suc-
cessful standards. in addition, we have considered the entire con-
text in which code is presented, a context which includes the sup-
porting texts and notations that make a program a living piece of
written communication.

‘-‘ ‘l. i L

Program Visualization Project
Heenan Coamonting Resources
%.ieit Mascus and Associates

Final Report: Chapter I: Section 1.2: Page 5
Theory. Results, Introduction Programs as
Conclusions Publications

Section 1.2
e .+

Programs as Publications
£ DS i i L R R T e e R e e

Programs are publications. a form of literature. Just as English
prose can range in scope from a note scribbled on a pad to a his-
torical treatise appearing in multiple volumes and representing a
lifetime of work, so do we find a variety of programs ranging
from a two line shell script created whenever needed to an edition
of the collected program works of a laboratory, as is the case, for
example, with the UNIX (tm) operating system. (See [Lions, 1977]
for an early example of this idea applied to the UNIX kernel.) The
line printer listing, which represents the output of conventional pro-
gram publishing technology, is woefully inadequate for documenting
an encyclopedic collection of code such as the UNIX system, or
even for such lesser program treatises as compilers, graphics subrou-
tine packages, and data base management systems.

What we have done, therefore, is to apply the tools of modern com-
puter graphics technology and the visible language skills of graphic
design, guided by the metaphors and precedents of literature, print-
ing, and publishing, to suggest and demonstrate in prototype form
that enduring programs should and can be made more accessible
and more useable.

We divide the content of a program into three kinds of text: pri-
mary, secondary, and tertiary. Primary text includes what typi-
cally appears in a program listing: the program code and comments.
Secondary text includes various metadata describing the context in
which the program is used and various short commentaries (often
mechanically produced) pointing out salient features of the pro-
gram. Tertiary text includes the various longer descriptions and
explanations of the program that typically are called documenta-
tion.

(tm) UNiX is a trademark of AT&T Bell Laboratories.

P . [S R g - i o Bl T 2 - kT SR DR i av e L o L R T RE e o ey e e e R
u2 ron darpa linalreport 0 Ang {514 Revision 3.3 Printed 30 Aug 85
N o i Shia s TP 0 i D L .. S N Ve S S e
5] Program A isuatization Project Final Report. Chapter t: Section 1.3; Page 6
ol Human Computing Resources Theory. Resulis, Introduction The Goat of Our
[: Adriam Marcus and Associates Conclusions Research
» -
3 Section 1.3 The Goal of Our Research
s e s T | R T A i R R S OO S S e e e SR R R S R
f.: Our goal has been to take a fresh approach to the presentation of
source text, and thereby to make it:
3 — more legible
D — more readable
= — more intelligible
— more vivid
% — more appealing
% — more memorable
- — more useful
— more maintainable.
_;
T,
b s
i
= BT ? i R TR B
% - - - 3 ' - - - \0. L) - -.
- o Sk ‘ 4 f % R . e L) -. . "‘ “. "“ K SNt o F --' g -'~

2 s - O =t I IRl 8 e T ol 0RO o T, e

]
S A P g g ey N A B AT L T T AN R K, 1 &, O P L B0 - O T e Bt W S L RS B o My
P L T T, Uy S L N O VT I T, SERRP U] S T By R R S W O e It e Ay e e o)

-~ T - k. . g
i e TR e

- 2 . B
LR . o - L WL

Program Visualization Project
Human Computing Resources
Aaron Marcus and Associates

Final Report:

Chapter 1. Section |.4: Page 7
Theory. Results, Introduction Methodology of Our
i_onclusions Research

Section 1.4
[ie= ~ T 6)

»
o S

PP W AR

Methodology of Our Research
T P S o R e D R R R e S e

Our research has proceeded as follows:

We first developed a graphic design taxonomy for computer-based
documents and publications. This was intended to be a checklist
for approaches to enhancing source code presentation [Gerstner,
1978; Ruder, 1973; Chaparos, 1981].

We simultaneously developed a taxonomy of C constructs, a sys-
tematic enumeration and classification of aspects of the language
[AT&T. 1985; Kernighan & Ritchie. 1978; Harbison & Steele, 1984].
This was intended to be a companion checklist for insuring com-
pleteness in the representation of C source text. We subsequently
reworked our taxonomy slightly to make it maximally consistent
with the presentation in [Harbison & Steele, 1984]. We chose to
work with C for a number of reasons: its commercial importance,
its illegibility, and its unreadability.

Next, we collected and systematized typical mappings from C con-
structs to typographic constructs, examples abstracted from real C
programs prepared by typical experienced C programmers.
Because these examples often embody real design insights from
non-designers, we call them “folk designs”.

Then, we developed a systematic approach to the design of map-
pings from C constructs to typographic constructs, an approach that
forms the basis for detailed visual research into effective presenta-
tions of C source code. We shall describe the approach in detail in
this report and illustrate it via an application to a concrete
example.

To test our systematic approach to the design of program presenta-
tion, we constructed SEE, a visual C compiler, a program that maps
an arbitrary C program into an effective typeset representation of
that program. A description of the implementation appears in Vol-
ume 6 of the report. We have produced numerous examples using
this automated tool. which has in turn enabled us to improve the
graphic design of program appearance. Some of the examples are
collected in Volume 3 of the report. The final specifications were
then embodied in a graphic design manual for the appearance of C
programs. This manual is Volume 2 of the report.

Finally, we shifted our viewpoint away from the details of code

S N Lo e o LMWL W et -
a5 LR ..."~- '\.:W‘ ".n.“.‘a:'..
" WL L e e s S R ke S S s Ba e L HL Y e LS .
% ath TN SN, g e T, LN LN " v 0
e aratatatatad o ik PJ%.A"l}l\..';.‘J"_;P)"A"_..\‘.‘*;I.':‘:_':.::_‘..'.‘A.‘_...LL_;.. il .
S .

l‘l_

(]
e, i o A o 3o = i et H S
" Program Visaalization Project Final Reporr Chapter I. Section 1.4 Page 8
4 Human Computing Recourees Theory, Pesu-rs, Introduction Methodology of Our
¥ Ad.ol Marcus and Asscciales Conclusicr« Research
Y appearance and considered the larger issue of the function, struc-
\ ture, contents, and form of the program book, the embodiment of
¥ the concept of the program as a publication. Although we did not
fully automate its production, we developed and have included as
f Volume $ of the report a mock-up of a prototype of a program book.
. For comparison purposes, we have included as Volume 4 “the same”
- listings and documentation in the form in which programmers
) would currently receive it.
~
hl
-
[
+

Program Visualization Project Final Report Chapter | Section 1.5: Page 9

Haman Computing Resources Theory, Results, Introduction The Final Report and
Aares Marcas and Associates Conclusions the Deliverables
Section 1.5 The Final Report and the Deliverables

Volume 1: Theory, Results, and Conclusions

This volume presents the theory, summarizes the results, and sug-
gests the conclusions that may be derived from the overall work.

Volume 2: A Graphic Design Manual for C

Volume 2 summarizes our systematic approach to the design of
program presentation from a graphic design perspective. It is
therefore a graphic design manual for the appearance of C pro-
grams and C program books.

Volume 3: Graphic Design Variations of C Program
Appearance

Volume 3 presents selected examples of C program visualization
that can be realized with the SEE program visualizer and that
present significant variations of the recommended conventions.

Volume 4: Traditional Listings and Documentation for
the Eliza Program

Volume 4 presents tlie listings and documentation for a program
in its typical form of appearance. The program shown is Joseph
Weizenbaum's famous Eliza program [Weizenbaum, 1966]. Henry
Spencer of the Department of Zoology of the University of
Toronto has implemented this new version.

Volume 5: A Prototype Program Book of the Eliza
Program

Volume 5 illustrates the concept of the program as a publication.
A mock-up of a prototype program book of the Eliza program
appears. Included in the mock-up is the primary source text, the
code and comments, which were automatically typeset by the SEE
program visualizer.

Volume 6: A Program Visualization Implementation

Volume 6 describes the implementations of SEE and of the UNIX
TROFF [Kernighan, 1982] typesetting macro packages used to for-
mat program visualization text and programs.

"

e s | - ".I\'N' ‘5-.
L% "

PR O o

N W i
4 PO - T | L
it Sl Pl S e e e

'y

l;:'i‘
&
7

i, T
Program Visualization Project Final Report: Chapter I Section 1.5: Page 10 V-'-.';«.’ :
Human Computing Resources Theory, Results, Introduction The Final Report and i_’.'."_ﬂﬁ-‘.
Aaron Marcus and Associales Conclusions the Deliverables ¢ hte)
N Ll
A
- e
Deliverables o

These six volumes comprise the Final Report and the Graphic
Design Manual to be delivered to DARPA as per the Contract Data
Requirements List of Contract Number F30602-82-C-0173. In par-
ticular, referring back to the Statement of Work, Section 4.2, the
“typeset examples” of Section 4.2.1 are included in our Volumes 1|
through 3 and 5; the “program” of Section 4.2.2 is described in our
Volumes | and 6, the “Graphic Design Manual” of Section 4.2.3 is
our Volume 2; and, the “report™ and “image sequences” of Section
4.2.4 are included in our Volumes 2 through 5.

A Program Visualization video tape is being prepared which illus-
trates the objectives, goals, method, results, and significance of our
work in a more informal manner. A magnetic tape containing the
implemented program is available where appropriate.

Finally, we note that the typeset examples in Volumes 1, 3, and 5
wre prepared “almost totally automatically” by SEE. Electronic or
manual fix-ups were used to fix three bad line breaks in Volume 5,
to add some white space in two recurring kinds of locations in Vol-
umes 1 and 5, to fix roughly six bad page breaks in Volumes 1 and
5, to add letratone, an occasional bracket, and the pointing fingers
that appear in Volumes 1, 3, and 5, and to add the footnotes shown
in Figure 50 of Volume 3. For comparison purposes, fingers have
only been used in the example in Volume 1, the first five figures in
Volume 3, and one file of Eliza in Volume 5.

L e A T R ey g0 S UL SO R L RS RO
< = e TN ORI L EAL I S) .
SRS R SR A LRI T S S i R
» I‘_‘.'Q.~‘0 ‘\,'-. - .‘i. (YL AEH D '.'.'.' oo (e T ¥
- - - [] - - - - L b
\i\‘-\.' ';..'z’;::h\.!.xi'; E K5 EN '1.)';1 _._‘;\':_:. ot ke

PR A

-
e

LA

Program Visualization Project
Human Computing Resources
Aaron Marcus and Associates

s Bk, Bt Sull bat_ Gl 86 i -t bl i 4 g P Ais A U ! 4 TR AU

Final Report Chapter 2: Page 11

Theory. Results. An Example of the
Conclusions Design of Program
Appearance

Chapter 2

An Example of the Design of
Program Appearance

Our example consists of a slightly updated version of a desk cal-
culator program that appears in a standard book on C [Kernighan
& Ritchie, 1978].

The program is shown as Figure | on pages 16 through 18 as it is
output on a typical dot matrix line printer, a device similar to that
used by tens of thousands of programmers of microcomputers and
minicomputers. Even the lightness of the type, caused by a worn
out ribbon, reflects an unfortunate aspect of the way most line
printers are used. This of course impedes legibility and readabil-

ity.

The program is shown again as Figure 2 on pages 20 through 22.
This time it has been output on a modern laser printer. It appears
in exactly the same format as does Figure 1, and again uses fixed
width type in a single font at a single point size. Legibility and
readability are somewhat enhanced.

Figure 3 on pages 24 through 27 shows the output from the cur-
rent version of the SEE processor to the same laser printer with an
appropriate set of fonts. The C program was not modified at all for
input to SEE; exactly wle same text was input to the listing program
that produced Figures 1 and 2. The SEE output was massaged only
in the introduction of some white space to improve the way in
which the program is paginated, since white space introduction and
pagination are not yet handled automatically by SEE. The subtitles
below refer to categories of program visualization improvements
discussed later in this volume: the numbers in the margin of Figure
3 refer to various items in the following commentary:

The Presentation of Program Metadata

1. The program is presented on a standard 8%:x11 inches page that
is separated into four regions. a header, a footnote area, a code
column, and a marginalia comment column.

2. The header contains key document metadata describing the
context of the source code that appears on the page. including the
location of the file from which the listing was made and the page
number within the listing.

1 o
i AT

>
\.I--
+ .,
.

Program Visualization Project Final Report: Yoi ! Chapter 2: Page 12

1luman Compuiing Rescurces Theory, Results, An Example of the
Aaron Marcus and Associates Conrclusions Design of Program
Appearance

The Spatial Composition of Comments

3. Comments that are external to function definitions are
displayed in a small-sized serif font inside an outline box. There is
ample margin allowance around the text to ensure optimum legibil-
ity and readability.

4. Comments that are internal to function definitions are displayed
in a small-sized serif font appropriately indented and marked by a
left vertical bracket.

5. Comments that are located on the same lines as source code,
which we call marginalia comments, are displayed in a small-sized
serif font in the marginalia column. These items are intended to be
short single line phrases.

.

F i it

B
&

The Typography of Program Punctuation

56,99

6. In this example the *;” appears in 10 point regular Helvetica
type, and thus uses the same typographic parameters as does
much of the program code. The “:”, on the other hand, has been
set in bold type, and the “,” has been enlarged to 14 point. These
distinctions highlight the difficulties in achieving legible punctua-
tion with currently available typefaces. The bold is often slightly
too heavy; the regular weight is sometimes too easily overlooked
if the original has been poorly displayed with badly adjusted
equipment or if it has been degraded through photocopying. In
addition, idiosyncratic size changes for particular characters in
particular fonts are often desirable.

7. Symbols such as the “++" and the “— —" have been kerned, that
is, the letter spacing of individual characters overlaps to make
them more legible and readable.

8. Symbol substitutions have not been introduced for symbols that
clearly need improved appearance, e.g., the “>=",and “==",
Whether or not these substitutions are invoked should be deter-
mined by a flag under control of the user. Legibility criteria
would suggest innovation; however, reader familiarity and direct
semantic reference to two input keyboard strokes would suggest
the conventional aliernative that we currently recommend. For
an example of this, see Volume 3, Figure 20, page 28.

- - '.;1:'{ g

!

Rl

ol R

e A R A e
B RER R ER LKA

D R AT T AT T AT TR SNSRI 3

5 T B Mg AP S £ T e gl o B i i P S g TSk o Sy W i F

Fiogram Visualization Project Final Report: Chapter 2: Page 13

Human Computing Resources Theory, Results, An Example of the
Aaren Marcus anc Associates Conclusions Design of Program
Appearance

Typographic Encodings of Token Attributes

9. Most tokens are shown in a regular sans-serif font; reserved
words are shown in italic sans-serif type. Bold sans-serif is used
to highlight global (extern) variables (see 22).

10. String constants are shown in a small-sized serif font.

The presentation of Preprocessor Commands

11. The “#” signifying a preprocessor command is exdented to
enhance its distinguishability from ordinary C source text.

12. Macros and their values are presented at appropriate horizon-
tal tab positions.

The Presentation of Declarations

13. Identifiers being declared are aligned to a single implied verti-
cal line located at an appropriate horizontal tab position.

The Visual Parsing of Expressions

14. Parentheses and brackets are emboldened to call attention to
grouped items. Nested parentheses are varied in size to aid the
parsing of the expression.

15. The word spacing between operators within an expression is
varied to aid the visual parsing of the expression. Operands are
displayed closer to operators of high precedence than to operators
of low precedence.

The Visual Parsing of Statements

16. Systematic indentation and placement of key words is
employed.

17. Since curly braces are redundant with systematic indentation,
they are removed in this example. Whether this happens or not is
determined by a flag under control of the user.

18. “Unusual™ control flow is marked with pointing figures located
in the margin.

- -“ '..‘ ‘-_‘v"‘ “» - ‘.‘ .t a
SN N A NS

e i S P i e F o e i e g il
CEU ik gcn A Sl T et S il el e et

Program Visualization Project Final Report: Chapter 2: Page 14
Human Computing Resources Theorv. Results, An Example of the
Azt Marcus and Mssociales Conclusions Design of Program

Appearance

The Presentation of Function Definitions

19. The introductory text of a function definition, that is, the func-
tion name, is shown in bold sans-serif type.

20. A heavy rule appears under the introductory text of a func-
tion definition.

21. A light rule appears under the declaration of the formal
parameters.

The_ Prgsentation of Ifrqgram S_trgctqre

22. The globa! variable in C is a fundamenta! mechanism through
which functions can communicate indirectly, and as such also rep-
resents a major potential source of programming errors. We
therefore call attention to most uses of globals (but not manifest
constants) by highlighting them in bold face.

23. Cross-references relating identifiers used in one file to the
location of their definitions in another file could be included as
footnotes to the source text. For an exampfe of this. see Volume 3,
Figure 50, page 65.

’v’

—r, oo
3

-
- % N
FE 254 4
e) . -
. &t S 7] . ¢ - B - L - PN N N, b
d Fs . # r . . i o s
TR R, .'\._‘- & S e eV W ol e .'._"-:"-:, i ana® o S _': Gl o ric 2ot s L e R e i Mo PRI, S W0 T, R T L

AN Ll o ol b

G g g eia

Program Visualization Project
Human Computing Resources
Acran Marcus and \ssociates

Final Report:

Thenrv, Results,

Corn:h sions

Chapter 2:
An Example of the
Design of Program

Page 1§

Appearance

Figure 1: A listing of a simple desk calculator program produced on
a dot matrix line printer

(See next 3 pages.)

:

A

":“l ‘ Tt eT e g ARETEY
L a8 i 3

.
DRt]

L4 " " ..
Pl A
.

. -
.
o

- W

¢

L &0

Page 16
Aug 30 11:49 1985 calctl.c Page 1

/e
This reverse Polish desk calculator adds, subtracts, multiplies ond
divides floating peint numbers. It oiso allows the commands °'=" to
print the value of the top of the staock and 'c’ to clear the stock.
[]

include <stdio.h>

define MAXOP 20 /* max size of operand, operator o/
define NUMBER 0" /¢ signal that number found s/
define TOOBIG '9' /* signal that string is too big ¢/

/e Control Module o/

int type; /e operation type s/

char aquXOP]- /e buffer containing operator s/

double op2, /+ temporary variable ¢/
alo'(). /¢ converts strings to floating point e/
pop(). /* pops the stack </

push(): /+ pushes the stack =/
/* loop while we can get an operation string and type o/

while ((type = getop(s, MAXOP)) != EOF)
switch (type)
case NUMBER:
push(atof(s));
break;

rer

case

push(pov() + pop()):
breok;
cose
pu-h(pop() e pop()):
brcak'
caose '-'
opz = po
pu-h(pop() - op2);
. '?rnck.
op2 = pop():
if (op2 != 0.0)
push (pop() / op2);

case

else
printf(“zero divisor popped\n");
break;

printf("\t%f\n", push(pop())):
break;

case ‘=’

case :
clear():
break;
case TOOBIG:
printf("%.20s ... is too long\n", s);
break;
default:
printf("unknown command %c\n", type);
break;

/* Stack Management Module o/
fdefine MAXVAL 100 /e maximum depth of val stack =/

int sp = @; /e stack pointer s/

double vaI[MAXVAL] /* value stack s/

double push(f) /* push f onto value stack =/

Toublo T

if (sp < MAXVAL)
return (val[sp++] = f);

else §
printf("error; stack full\n");:
clear():

L ', 4 "\, \' \ ..!-
5\ ‘J\ e i "ﬁ -

&QIE* ‘}Lf\élh;

colcli.c Page 2

Aug 30 11:49 1985

return(0);
¢

double pop() /* pop top value from stack ¢/

if (sp > @
ine rozurn(voll--lp]);
else |§
printf("error: stack empty\n"):
clear():
r.lurn(.);

ilcer() /e clear stack s/

/e Input Module ./
getop(s, lim) /* get next operator or operand ¢/

chor s[]): /e operator buffer ¢/

int lim; /e size of input buffer e/

int i, ¢;
/e skip blanks, tobs and newlines ¢/
while ((c = getch()) == * * || c == *\t' || ¢ == *\n")

/e return if not a number o/
if (c!'=ms *".' &k (c < '0" || ¢ > '9'))
return(c);
s[0] = ¢;
/* get rest of number ¢/
for (i = 1; (¢ = getchar()) >= "0’ && c <= ‘9'; i++)

it (i < lim
s[i] = .
if (¢c mm *.') § /0 collect fraction s/
if (i < Ii.
s(i
for (i++; (c = g-tchor()) >= ‘0’ Bk c <= '9'; i++)
it (i< tim
" s[i] = ¢;
if (i < lim) § /* number is ok s/
ungetch(c):
s[i] = *\o’
ro!urn(NUMBER)
{ else | /e it's too big; skip rest of line o/

while (c !'s '\n' && ¢ != EOF)
¢ = getchar();

sf[tim - 1] = '\@";

return(TOOBIG) ;

fdefine BUFSIZE 100

char buf[BUFSIZE]; /+ buffer for ungetch o/
int bufp = @; /* ne free position in buf s/
rotch() /e get a (possibly pushed bock) character ¢/

return((bufp > @) ? buf[==bufp] : getchar()):

ungetch(c) /* push character back on input o/
int c;

RO
\f%}%‘

LS

e W

Page 18
Aug 3@ 11:49 1985 caict.c Page 3

if (bufp > BUFSIZE)

printf("ungetch: tao mony charocters\n®),;
else

buf[bufp++] = ¢;

>

g e ol e K i e

e LR T A N

SR o R B el v i)t it b P 8 B U 0 G Y S 058 N A e 6 e B TR

Program Visualization Project
Human Computing Resources
Aaron Marcus and Associates

Chapter 2: Page 19
An Example of the

Design of Program

Appearance

Finai Report;
Theory, Resuits
Conclusions

Figure 2: A listing of the desk calculator program produced on a
laser printer

(See next 3 pages.)

G e b e e e ke i i oo it R o i B g b i B e e b i i eetii g s e Sikb ag ek

Page 20

/-
Th:s reverse Folish desk calculator adds. subtracts, multiplies and
divides floating point numbers. It also allows the commands *=' to
frint the value of the top of the stack and 'c’' to clear the stachk.
-

#include (stdio.h)

#define MAXOF 20 /% max size of operand. operator e/
#define NUMBER *'O° Fe signal that number found »/
#sdefine TOOBIG '9° /% gignal that string is too big =/
S- Eontrol Module LV4
cale)
<G
int type: /% operation type */
char sCMAXOF1: /* buffer containing operator =/
b double opl., /% tempoOrary variable =/
y aAtof (). /% converts strings to floating pc:nT
; POP () » /% pops the stack »/
L pushi()s /% pushes the stack =/

/%« loop while we can get an oOperation string and type e/

3 while ((type = getop(s. MAXOF)) '= EOF)
1 switch (type) {
case NUMBER:
push(atof(s))
break;
case '+':
push(pop () + pop(l)}
break:
case '+':
push(pop () » pop())
break:
case '-':
op2 = pop ()}
Push (pop () -
break!
case '/°':
b ops = pop():
1 1f (opl != 0D.0)
Push (pop() 7 op2)t

Rod i La il S S

opl s

else
Printf("zero givisor poppedi\n™);
break:’
case '=':
3 printf("\t%f\n", push(pop()))}
break
case 'c’':
clear ()}
break
case TOORIG:
Printf("L.20s ... is too long\n", s)i
break:
default:

Printf("unkhnown command %c\n". typae):
Dreahk

N L R
LR TR, FRTEA R

e TR IR RN s
PRI B D TR DR TR R R B

‘o

LA AR

Page 21

it (¢ == * .) (/% collect fraction »/
14 (4 ¢ 1im)
slil] = g3
for (i++3 (c = getchar()))= '0' L&k c (= *9'; i++)
if (4 ¢ lim)
slil] = ¢3
>
{6 5 GG 18 lmp) /% number is ok »/
ungetch(c) s
sCil = '\OQ*s
return (NUMBER) 3
] } else { /% it's too bigi skip rest of line =/
4 while (¢ != '\n* 2% c '= EOF)
c = getchar(O:
sflim = 11 = "\0's;
return(TOOBIA) 3

#define BUFSIZE 100

char bufCBUFSIZE]: +» buffer for ungetch »/

int bufp = 03 /* next free position in buf =/
s getch () /% get a (possibly pushed back) character =/
B {
9 return ((bufp » O 7 bufl--bufpl : getchar()):

o
) ungetch (c) /% push character back on input =/
. int cs
E {
3 if (bufp » BUFSIZE)
- print f(“ungetch: too many characters\n"):

elsa
buflbufp++]l = c3

- ¥

k=
.
-
.
.

-t e % %N -
‘- - - .- . v 5‘- ._-\.- “- i
o o T VR T

- e - - L) . -
_ o o Wy PR
Y Y ';-'J":l"a".n.'.h.‘.-' - :\A ol

T I

Page 22

/» Stack Management Module o/
#sdefine MAXVAL 100 /* maximum depth of val stack »/

int sp = Ot /% stack pointer e/

double valCMAXVALIS /* value stack s/

double push(+$) /% push ¢ onto value stack e/

double f3

<

if (sp (MAXVAL)
return (vallsp++] = §)i

else <
printf("errort stack full\n")3
clear():
return(0)3
b 2
} .
double pop () /* pap top value from stack ¢/
<
if (sp > O)
return(vall--spl)s
else <
printf("error: stack empty\n"):
clear():
return Q) s
>
}
clear () /* clear stack =/
<
sp = 0O
b 4
/n Input Module ./
g@tcp (s, lim) /% get next cperator or operand */
=har sCl;s /& cparator buffer s/
tnt laims /* size of input buffer =/
4
int i, c?

/+ skip blanks, tabs and newlinas +/.

while ((c = getch()) sa * ' ! c am "\t? ! c == "\n')

/% return if Not a number +/

if (c !'s ", %% (c ('O e) '9Y))
return(c)s

sC0] = ¢

/# gat rest of number «/

for 1 = L1 (2 s gatrhari()) ds 0" %% g (8 'P': Les)
L1 (1 C Laamd
sli1] = ¢

i hgra et

LG

Program Visualizasion Project

L
£§
=a

43

%]

-lp
NSO
= BS
NG
&= o0
]
£ B8 @
u<a
=
=l
g8z
gx O
@ >3
=
£g5
(=Y ¥

Human Computing Resources
Aaroa Marcus and Associates

Appearance

lizer

tsua

The desk calculator program produced on a laser printer

he SEE program v

Figure 3
using t

(See next 4 pages.)

L

Pl
T Tl

ol

i ol |

Prograin Visualizatic:. Project Calculator calcl.c calc()
Human Computing Resources
Aaron Marcus and Associates

Page 24

Chapter 1 calcl.c

This reverse Polish desk calculator adds, subtracts, multiplies and
divides floating point numbers. It also allows the commands ‘=" 1o
print the value of the top of the stack and ‘¢’ 10 clear the stack.

Include <stdio.h>
Max size of operand. operator # define MAXOP 20
Signal that number found # define NUMBER 0’
Signal that string is too big # define TOOBIG 9’

1
| Control Module

calc)
Operation type int type:
Buffer containing operator char s[MAXOP];
Temporary variable double op2.
Converts strings to floating atof(),
point
Pops the stack POP().
Pushes the stack push();

Eoop while we can get an operation string and type

while ((type = getop(s, MAXOP)) '= EOF)

switch (type)

case NUMBER:
push{atof(s));
break ,;

case '+"
push{pop() + pop()):
break ;

case ™"
push(pop() * pop()):
break ;

case '-"
op2 = pop().
push(pop() - op2):
break ,

case '/"
op2 = pop().
if (op2 '=0.0)

push(pop() / op2);
else
printf ("zero divisor poppedi\n®);

break ;

»
i.
L'
.

e

o te Ve v

Program Visualization Project Calculator calcl.c calc(y Page 25
Human Computing Resources
Aaron Maiwus and Associates

case '="
printf (“\enna®, push(pop())):
break ;

case ¢”
clear();
break ;

case TOOBIG:
printf ("%.20s ... is 100 long\n", §);
break ;

default :
printf (“unknown command %c\n®, (ype);
break ; '

Stack Managemen| Module

Maximum depth of val stack #define MAXVAL 100
Stack pointer int sp=0;
Value stack double val[MAXVAL];
double
Push [onto value stack pUSh(')
double f;
if (sp < MAXVAL)
Cr return (val[sp**] = 1);
else
printf ("error: stack full\n");
clear();
r return (0);
double
Pop top value from stack pop ()
if (sp > 0)
Ir return (val[~~sp]l);
else
printf ("error: stack empty'n"),
clear();
o return (0);
Clear stack CIear()
sp=0,

3
>
. %e,

A
el ol ae et s

o—
AN AN
S NS N T P
L)

Program Visualization Project Calculator calcl.c getop() Page 26
Human Computing Resources
Aaron Marcus and Associates
Input Module
etop(s, lim
Get next operator or operand g Op(2)
Operator buffer char s(l;
Size of input buffer int lim;
int i,
C;
e

Collect fraction

Number is ok

It’s 100 big. skip rest of line

Buffer for ungeich
Next free position in buf

Get a (possibly pushed back)
character

{ikip blanks, tabs and newlines
while {(c=getch()) =="' |l c=="t' || c =="n');
Eelurn if not a number

it (cl=""88 (c<'0 I c>"))
b return {c);
s[0] =c;

—
I_Get rest of number

for {i=1; (c=getchar()) >='0" 8& c <='9"; i**)
if (i <lim)
slil=c:
e ="
if (i <lim)
slil=¢;
for (i**; (c=getchar()) >="0' 8& c <=9 i**)
if (i <lim)
slil =c;
if (i <lim)
ungetch(c);
s[i] = \000";
= return (NUMBER);
else
while (c '="\n' && c '= EOF)
¢ = getchar();
slim = 1] = \000";

r return (TOOBIG);
define BUFSIZE 100
char buf[BUFSIZE];
int bufp = 0;
getch(

return ((bufp >0) ? buf[~—bufp] getchar());

R VN AT YRS T T BN
.-._‘,‘.,,.x- ORI AL

21

+

e
'I"ll
S

4
(]

l'l‘l
ey
Ay -y
o

5
3
s

rl

~ .
w1
el |

ungetch()

calcl.c

Calculator

Program Visualization Project

Human Computing Resources
Aaron Marcus and Associates

- . — IR —E——— — .
P B AR AR 8L Nt o R A 0k A o AN € T

Eetch(c)

Push character back on input

(oH

it (butp > BUFSIZE)

printf ("ungetch: 100 many characters'n”)

else

buf{bufp**] = c.

. D% im ot v iy, g et m e R L N e # e e o~ TR e e
. : : . s

vl
#
/
-]
1
4
I
P
r
y
&
-

— — Ty
e A e o en e SRS e e mch s o s s R i .

& s .

Program \ ssuahizanion Project Final Report Chaprer Page 28
Human (omputing Kesources Theory . Resulty ¢ Program Books
Aaron Marcus and Associates Conclussons

Chapter 3 C Program Books
e — T T T

A program book would tvpically be composed of primary. secon-
dary. and tertiary texts structured into five parts (see Figure 4):

e e e e |

The book begins with secondary text known as the “front mat-
ter”. This may include a cover page. title page. copyright page.
{ abstract, authors and personalities page. and program history
page.

- Chapter | is the tertiary text that comprises the user documen-
tation: the command summary and manual page. the tutorial
i guide, and the reference manual.

— Chapters 2 through n+ | constitute the primary text, the pro-
gram code and comments. Each file of the n [iles in the pro-
gram appears in a separate chapter. Each program page has
various metadata and commentaries included in its header and
footer.

— Chapter n+2 contains more secondary text. various indices and
overviews. These may include program metrics, program sig-
natures and condensations. a cross reference index. a key word
in context index, a call hierarchy, and various other diagrams.

, — Chapter n+ 2 includes the remaining part of the tertiary text.
the programmer documentation: the installation guide and
README file. the "make"” file, and the maintenance guide.

Whereas any listing or representation of the program or of a piece
of it will contain primary text. some or mast of these secondary
texts can and will be omitted in a “quick &nd dirty” look at a pro-
gram that is likely to be changed almost immediately. as is the case
when one is creating or debugging code.

The tertiary text is the source of still additional information about
the program. how it was built. and how it is to be used. Even more
so than in the case of secondary text, the investment in the produc-
tion of tertiary text is most easily justified if the program has con-
siderable readership and longevity.

o ‘.:.'.‘-_'r N Nt e FET .'.'_7. P
5 B & O e L Y . o
&t < 4
A e N e s T T s e, T TR A
o et et aatatalwla Colnalalala hlafato dala Su

Program \ issahization Project
Human Computing Resources
Agron Marcus and Associales

Final Reporn
Theory Resuits
Concliunions

haprer

C Program Hooks

Figure 4: The structure of a program book

Page 29

1

Program Book

Primary Text

Source Code

Comments

Support Documentation

Secondary Text

Front Matter Metadata Commentary
3 % Tutigry Text
Indices Overviews User Programmer

Documents Documents

o

(K
5

% :I-i S Ty
"f.‘- \f.ﬁ .

P4

77,

. "

WAL 3.

ot

v

H

R

<8 Te ¥ ¢
LAl

e

P

AT,
i
e e I
S, 'y V"?
e e .'..

5

: R IR 2P
: Program Visualizanen Project Final Report. Chaprer 3: Section 3.1: Page 30
o\ Human (omputing Resources Theory, Results, C Program Books Secondary Text: Front
Y Aaron Marcus and Assocares Conclusions Matter
b
N Section 3.1 Secondary Text: Front Matter
ST S S S e T N S R T T SR
5
“»
~ Cover Page 3 8
A program published in book form may need a cover page identi-
R fying the book and depicting it with an attractive illustration.
Title Page)
The program’s title page presents the most important metadata,
such as the program’s title, author, company and address of the
- author, version, date, publishing source, and level of confidential-
~ ity.
- Colophon
The program'’s colophon presents production information, details
about the typesetting, printing. and distribution of the document.
Abstract
An abstract of the program summarizes what it does, how it
= accomplishes it, and why it does it.
s
B Program History
A A design history presents the history of the system from concep-
tion to implementatior through recent modification. As program
genealogy, it may also ~e invaluable in understanding apparently
4 nonsensical constructs and bizarre artifacts.
- Authors and Personalities
' This page lists the authors and other important personalities (e.g.,
augmenters and maintainers) associated with the program, gives
- their postal and network addresses, their phone numbers, and
i potentially also their photographs [Pike, 1985].
E Table of Contents

The table of contents enumera[es the major parts of the program.
In the case of a program operating under the UNIX operating sys-
tem, for example. it would probably list the directories and files
and possibly also the defined functions.

B Ay '.-._' SR N R IR LR
A A \._..\ . . o, =%

. - - « " . . e
\\\ o S _'._._\‘ ASRELN

L0 F TR T
.

e i L
G R o5 Lt
S AtA ".}}_- S.L" \ o ".l-" \ "J\'_AP_II_A_‘L‘_A ATV AL AR LEL LT T o e o

e
e
L.“_.- &%
g
S
_ et T il P
Program Visualization Project Final Report: Chapier 3: Section 3.2: Page 31 :f\.“\."
Human Computing Rescurces Theory, Results, C Program Books Tertiary Text: User -}*\
Aaron Marcus and Associates Conclusions Documentation Jeds
LA
&:'_:l’_’-f' o
e
. . . PR B
Section 3.2 Tertiary Text: User Documentation LAy’
| U R R T B BT ey
ok »'
Command Summary and Manual Page :
A summary of commands is essential for every user of any sys- 0
tem. In the UNIX world, this command summary is often included f:,:;f,.
in the manual page, or “man page”. By convention, one such page oK

’

is written to correspond to each UNIX utility or command installed
on the system.

DR
"

e 3 Tt

Igtorial Guide

A tutorial guide presents a step-bv-step introduction to the usage
of the major features of the system.

gl el il }

R TN

Bef erence Manual

A reference manual is a comprehensive information source on all
features of the system.

ek 1 - & -.'
=P - .

& & & ta L » -
oot 2 LIRS, RN Rt S . - -
e = D SLICTEL IPUL W P, NP W S R -

LAFA

L) .
A & A .

o
.

L Y)
e

L)
a e

v'l

W'

2 T >
'-'_-' LA ‘i’JrJJI

'J.'."‘v‘v‘

g

-

Program Visualization Project
Human Computing Resources
Aaron Marcus and Associales

Final Report Chapter 3: Section 3.3: Page 32
Theorv, Results, C Program Books Primary Text: The
Conclusions Program

Section 3.3

R G g o o, e 1 AT o F L B ot o £ 0 S, 4 3
2 S g e Be t s R day "5‘.-‘.:-,'.-"'_".'--‘ ks LT ETRT IS W S IS TR YOt W TN Moy [P 50 M JPen, s SR N e 6 §
e b ol il

Primary Text: The Program

The primary text is the program itself. Its appearance is the topic
of the next Chapter of this report. Each file of the program is

represented by a number of program pages. These pages each
include:

Program Code

The “program books™ of today, known as listings, often contain
only code.

Program Comments

Comments appear in various forms and locations on the page, as
discussed in Chapter 4.2 of this volume.

i . e e . T Ol oy . S
oo) e . . L0 'y
o . a5
LWt Lt e e L b e R R T
Sy 2

¥

. S i
" oAl Mgt ot P i Pl R e,

PG AR T AT Sk i e

Sl e,
" eI Ao S RO I T N o f b Tl =
A il

Program Visualization Project
Human Compuring Resources
Aaron Marcus and Associates

Section 3.4
T R

Final Report:

Theory. Results,

Conclusions

Chapter 3:
C Program Books

Section 3.4:
Secondary Text:
Metadata and
Commentaries

Secondary Text: Metadata and Commentaries
R N i £ G L i O SO T LNSEY R O T L - L

Also located on the program pages are two kinds of secondary
text, selected metadata and program cross-reference information.

Program Page Headers

Program page headers include selected metadata under the con-
trol of the user requesting the listing.

Program Page Footnotes

Program page footnotes should include cross-references to the
definitions of identifiers declared “externally” to that particular
file.

b S A e

. F {4

Abe WL A WL W Mo W WL e o -

[plte AR S s6 o Pl e e - R TP s A R N A N S JRUN Y

Program Visualization Project
Human Computing Resources
Aaron Marcus and Associates

Fina! Report: Chapter 3: Section 1.5: Page 34
Theory. Results. C Program Books Tertiary Text: Indices
Conclusions and Overviews

Section 3.5
T — . . = a—

Tertiary Text: Indices and Overviews
A RN R <, AP v 11 s A R B

Programa Metries . - = .

A list of metrics [Gilb, 1976 Perhs Sayward & Shaw, 1981] would
include numerical tables and charts encapsulating significant pro-
perties or qualities of the program. Software engineers and human
factors specialists must determine their proper content.

Program Signatures and Condensations

Program signatures and program condensations are visual repre-
sentations of the code that compress the text into smal! diagrams or
symbols. These allow a viewer to quickly scan many pages of a
program.

Cross Reference Index

Cross reference listings detail where every ldenufler is declared
and all instances of its use.

Key Words in Context Index

Key word in context listings show all program phrases alphabeti-
cally in the context of their surrounding text.

Call Hierarchy
A call hierarchy diagram shows the nesting of function calls.

Other Diagrams

Various other diagrammatic representations [Martin & McClure
1985] that portray the structure of the program should also be
included.

ST S8
B ‘r‘-'

"’

A i B
| 5

5w ety g gL
42 L L

S
B
%
1)
e

Br .

Program Visualization Project
Human Computing Resources
Aaron Marcus and Associates

am——

Final Report Chapter 3: Section 3.6: Page 35§
Theory. Resulis, C Program Books Tertiary Text:
Conclusions Programmer

Documentation

Section 3.6
e g

Tertiary Text: Programmer Documentation
O e s, e v e e s T PR o e

The Installation Guide and README File_

An installation guide contains instructions on how to install a sys-

tem. In a UNIX distribution, it is typically part of a "README" file.

In the UNIX world, a README file is by convention included on any
tape containing a software distribution. This file is the first read by
the programmer upon receipt of the system. and thus should be a
guidebook to what is in the distribution.

The Make File T

In the UNIX world, the “make” file is used by the UNIX “make”
program to facilitate system recompilation and regeneration.

Maintenance Guide

The maintenance guide contains instructions on how to maintain
the system. It is thus an additional commentary on the program.

v

AT '..",_"..
s P
1) .
YA
a [§

.{zr

8 s N W TR W W W P S ——

Program Visualization Project Final Report: Chapter 4: Page 36
Human Computing Resources Theory. Results, Graphic Design of C
Aaron Marcus and Associates Conclusions Source Code and

‘ Comments

Chapter 4 Graphic Design of C Source Code
and Comments

Our goal in the research was to apply the full palette of graphic
design techniques to reveal and express the meaning of C pro-
grams. We worked on ten specific problems and explored various
methods for displaying the following:

The Presentation of Program Metadata

| Enhancing the display of a program in relationship to the relevant
data describing the context in which the program was created, is
maintained, and will be used.

The Spatial Composition of Comments

Presenting program comments clearly in relationship to program
code.

The Typography of Program Punctuation

Enhancing the visual effectiveness of C punctuation marks (separa-
tors, containment symbols, and operators).

— T

Typographic Encodings of Token Attributes

Mapping C tokens (identifiers, reserved words, and constants) into
effective typographic representations.

The Presentation of Preprocessor Commands
Presenting C preprocessor commands in a more effective manner.

The Presentation of Declarations
Enhancing the structure of the declarations of C identifiers.

The Visual Parsing of Expressions

Using typographic attributes to enhance the ability of a human
reader to identify and understand complex program expressions.

T »'P " PR O -s"\"\"s' Ao

kS " e el el pitat at " :
és‘(‘i‘j‘h&&ﬁ‘&“f‘i\!ﬁ\}\.ﬁ‘-_.UL‘? g0 i’! Lot

i 4 L LA 3 gt . g ' £
TR A A N S, W R W s v T oV g T T d A a i W L LT R G rOe e P P o lat it L = d A ‘. o .]

Program Visualization Project
Human Compuring Resources
Aaron Marcus and Associates

j ".\-..‘-.. “ ."-."L. S e e

-J".-'. ‘. o) Pl ES ESEACE £
J' » " o

ALY lL’)&A‘L‘\-LLJ e g'i 1

Finat Report. Chapter & Page 37
Theory. Resuits, Graphic Design of C
Conclusions Source Code and

Comments

The Visual Parsing of Statements

Usmg typographlc attributes to enhance the ability of the reader to
identify and understand complex program statements.

The Presenmtlorn of Functlon Defmltlons

Clarifying the structure of the definitions of C functions.

The Presentation of Program Structure

Enhancing the structure of a program in terms of its constltuent
parts, for example, its constituent files, declarations, and function
definitions.

e

e s LT " il i S

P s

Program Visualization Project
Human Computing Resources
Aaron Marcus and Associates

Chapter 4: Section 4.1: Page 38
Graphic Design of C The Presentation of

Source Code and Program Metadata

Comments

Final Report:
Theory, Results,
Conclusions

Section 4.1
C= — = ——_1

The Presentation of Program Metadata
S R s VN S R . SRR SR R S

A full understanding of a program can never come from reading
only the code. Comprehension requires a knowledge of numerous
items of metadata describing the context in which the program
was created and is used. Unlike comments, which usually
describe a piece of a program, these metadata refer to the entire
program. A partial list of program metadata follows:

— Title of program

— Author(s)

— Further developer(s)
— Maintainer(s)

— Owner(s)

— Publisher(s)

— User(s)

— In addition to names for all of the above individuals, their faces,
affiliations, postal and network addresses, and phone numbers

— Location of source code, i.e., machine, directory, file(s)
— Version, revision number
— Date and time of this version or revision

— Date and time that the current listing was created

Metadata appear in the program on the title page(s), table(s) of
contents, and indices, and in the headers of individual program
pages.

Related to but distinct from the metadata are longer texts that
describe the program, such as an abstract, statement of purpose,
and history. These tertiary texts are described in Sections 3.2,
3.5, and 3.6.

Aatpie xs
L Y h AYwTY b . ~ iz .
B R R R G e it R s o Bl dafh il Vg bad 4,

Program Visualization Project Final Report Chapter 4: Section 4.2 Page 39

Human Computing Resources Theory. Results, Graphic Design of C The Spatial
Aaron Marcus and Associates Conclusions Source Code and Composition of
Comments Comments
Section 4.2 The Spatial Composition of Comments

Traditional methods of structuring programs pay little attention to
developing and enhancing the content and method of presenting
comments in relationship to code. Comments., if added at all, are
often an afterthought, an unpleasant reminder that management

is concerned about issues of program readability and maintaina-
bility. Nor is the process of creating comments and integrating
them with code facilitated by the interactive text editors and pro-
gram development environments commonly available.

e A

In our research we were unable to deal with the management
issues implied by the legislation of adequate comments nor with
the literary and stylistic concerns of making comments both
appropriate and meaningful. Instead, we have been concerned
with presenting comments for maximum effect, both in isolation
and in relationship to code.

YT
‘l [.l ‘I
i

5183

To distinguish and highlight comments, we have distinguished
external comments (those outside a function definition), internal
comments (those within a function definition, which appear on
their own line in the input text), and marginalia (those within a
function definition, but which do not appear on their own line). iy
The typographic variations that we have considered or explored !
include:

— Comments integrated with code in a one column format; com-
ments strictly separated from code in a two column format;
and various mixtures of one column and two column formats.

-

— Assuming a two column format. code on the left with comments
on the right, or code on the right with comments on the left.

r'.'_'.
R L A (o 4
2 0 '- s

ror

|

r
y]

— Assuming a two column format. variations in the width of the _
code in relation to the width of the comments. for example, 2:1 o
or X:1. ol

— Use of the same font for code and comments, use of variations S
of one font (roman, bold, italic), and use of three different fonts

(for example, a square-serif font such as American Typewriter. Easasal
a serif font such as Times Roman, and a sans-serif font such as 3
Helvetica). AR
— Variations in the point size and leading of the comments rela- ey
4

tive to the point size of the code.

o

"~ s

— Use of various diagrammatic notations, such as leader lines,

AR TN T T T T
i Satitaa s i sl e i e

v " Tr T
e a3 AL ate S il dil‘NSlaeo B0 vaeiadte b gty b 8s G bie S8 s w Al et I AT Ra B R Sk g

Program Visualization Project V»nal Report: Chapter 4: Section 4.2: Page 40
Human Computing Resources iheory. Results, Graphic Design of C The Spatial
Aaron Marcus and Asscciates Conclusions Source Code and Composition of

Comments Comments

arrows, or connecting braces, to indicate connectivity between
code and comments.

— Use of various gray scale tints overlayed on regions containing
various kinds of comments.

— Use of various kinds of rules and boxes to delimit regions con-
taining various kinds of comments.

Yy
P g

L NV
v

-, & Pa .J:-;f-'{'- '-

" \‘_\- L P
Lln.':-.!L{IS:A.L

e b Re i i Tl At o 00 1 o B 09 it A i aReedat e in-

Program Visualization Project Final Report. Chapier 4. Section 4 3. Page 41

Human Computing Resources Theory. Results, Graphic Design of € The Typography of

Aaron Marcus and Associates Conclusions Source Code and Punctuation
Cominents

Section 4.3 The Typography of Punctuation

e —)

The punctuation marks of computer programs consist of separa-

tors such as *;" and “,”, containment symbols such as “(" and “}",
and operators such as “.”, “I”, and “!=". The legibility of punctua-
tion marks in program text is a critical component affecting the
comprehensibility of a program. much more so than the legibility
of English language punctuation affects the comprehensibility of a

passage in English.

We have therefore considered or experimented with various meth-
ods of enhancing the legibility of program punctuation, including:

— Emboldening and/or enlarging punctuation marks.
— Kerning compound (multicharacter) operators.
— Substituting symbols that are more legible.

It is obvious that, for C code, the ratio of punctuation marks to
alphabetics and numerics is quite different than for prose text.
Unfortunately, no typeface currently exists that has been optim-
ized for use in representing computer programs.

F &
Iﬁ,.."
h.
"

o
E
: t:“».-f
> s
ks o e R
:' Program Visualization Project Final Report’ Chapter 4; Section 4.4; Page 42 L o
_: Human Computing Resources Theory. Results Graphic Design of (Typographic o
Aaron Marcus and Associates Conclusions Source Code and Encodings of Token
Comments Attributes K
= == — Y
2 Section 4.4 Typographic Encodings of Token Attributes :
" e e i %
A~ Current attempts at program visualization often employ crude =
mechanisms for distinguaishing typographically one kind of token oW
. from another. Reserved words are often shown in bold face; man- RN
. ifest constants are often named using capital letters only. These :':"-:\ d
, attempts, typical of many prettyprinting programs, represent but 1‘_"_' -
. a small fraction of the wealth of the purely typographic possibili- p
. ties for enhancing the legibility and readability of programs. The =
optimum encoding is a complex synthesis of the reader’s needs for ot 5
clarity when scanning the text with a variety of search motives :'.
and when examining the text slowly and in detail. Unfortunately. .
. extensive data on programmer’s reading patterns is not yet avail- &
*_" able in th« literature of computer science or visible language. L :
. We have experimented with mappings from C token attributes to)
. typographic attributes. We first organized C token attributes i
; according to a token hierarchy. This procedure allowed us to dis- by g
: tinguish typographically the following classes: o
Comments (see Section 4.2) E.:- '
External comments o=
L Internal comments Al
; Marginalia comments B0
4 Punctuation tokens (see Section 4.3} .

Separator symbols
Containment symbols
Operators
Simple operators
Compound operators
1 Other tokens
Reserved words
Preprocessor reserved words (see Section 4.5)
Declarative reserved words
Control reserved words
Control flow altering reserved words
Variables
Local variables
Global variables
Static variables
Preprocessor macro names
*Manifest constants
Other macros

l..
- ".'
r LR
‘l"ﬂ.
, AR A e . JOUIA A vy i 4 :
- a ¥, " e e o L J A . K ¢
' il "."."q"-- e oY ‘,' S ','- o '\’\"'.‘ Lo % N ‘._\ o TR W 'I‘ .1’." A LIt L ;'-".r " s 'AL-'J:.I:"" _L_L_.__'__L_'AA'_.L\
.".4' o b Lab ":‘:.:";'.".LIL':L!'L{L"L"n..’- BT A L N P N P R PO R TR = ST G S ST S
y . FEpW HyW ‘oW v .

Program Visualization Project
Human Computing Resources
Aaron Marcus and Associates

Final Report: Chapter 4: Section 4.4; Page 43
Theory, Results, Graphic Design of C Typographic
Conclusions Source Codc and Encodings of Token

Comments Attributes

Other identifiers
Function names in declarations
Function names in use
Typedef names
Type tags
Structure and union tags
Structure and union member names
Enumeration tags
Enumeration constants
Statement labels
Constants
Integer, floating point, and character constants
String constants

We then considered or experimented with the visible language
appearance of these token attributes to achieve optimum legibility
and readability. Attributes used in the encodings included the fol-
lowing:

— Choice of typeface, for example, Helvetica, Times Roman, or
American Typewriter.

— Choice of weight, for example, medium or bold.

— Choice of proportion, for example, condensed, normal, or
extended.

— Choice of slant, for example, roman or italic.
— Choice of point size, for example, 8, 10, or 14 point.

— Use of capitals or lower case, for example, all capitals, all lower
case, initial capitals, small capitals, embedded capitzls, and
standard prefixes (such as “#").

— An overlayed gray screen tint, or reversed type (white on
black).

A \‘-.“P-'h
SN “\h'.\!'-

Program Visualization Project Final Report: Chapter 4: Section 4.5; Page 44

Human Computing Resources Theory, Results, Graphic Design of € The Presentation of
Aaron Marcus and Associates Conclusions Source Code and Preprocessor
Comments Commands
Section 4.5 The Presentation of Preprocessor Commands

The lexical structure of C encodes all preprocessor commands
with a prepended "“#". In addition, a standard convention for C
programming is the use of all capitalized letters to differentiate
preprocessor identifiers (such as manifest constants) from all
other tokens.

We have considered or experimented with additional encoding
and differentiation, for example:

— Use of typographic attributes such as described in the preced-
ing section,

— Use of positional encodings such as locating all preprocessor
commands at the left margin or even exdenting them so that
the “#” is in the margin.

— Use of definitional encoding, i.e., showing the macro call in
relationship to the text into which it expands.

Program Visualization Project
Human Computing Resources
Aaron Marcus and Associates

Final Report: Chapter 4: Section 4.6: Page 45

Theory, Results, Graphic Design of C The Presentation of
Conclusions Source Code and Declarations
Comments

Section 4.6
(i v i 1 el |

R A, g W
33 h A o ;

RS TOOL O IROADAR

The Presentation of Declarations
A N e R S SR s <, ¢ R R R I R R IR

Thus far we have considered only a program'’s imperative state-
ments, i.e., statements that transform existing data to produce new
data. However, much of a program’s intractability often occurs in
the declarative aspects, i.e., the declaration of variables as
instances of particular data types and the initialization specifying
values for certain variables. Again, the issue is complicated by
the fact that programs are often scanned for a variety of motives.

We considered or experimented with various methods of using
rules and tabular typesetting to enhance the legibility and reada-
bility of complex C data declarations, type definitions, and data
initialization. These typographic techniques included:

— Consistent use of line spacing, underline rules, and gray screen
tints to distinguish sequences of similar lines.

— Multi-column setting of long sequences of short declarations or
of lengthy initialization text.

— Tabular setting of sequences of declarations of variables of
simple type.

— Tabular setting of declarations of variables of complex type.

L e S R
R o s Vadld €5 R
Lo S o SO B A S R Y 3
bl ot o S i o B it o B

e T R 3

\ - 5 B -
0 . L gl gl ol B R R il W
(b T b e et R R S ol R S S e B B S B S S e B e A e

X

L =
Program Visualization Project Final Report: Chapter 4: Section 4.7: Page 46 l:_
Human Computing Resources Theory, Results, Graphic Design of C The Visual Parsing of e
Aaron Marcus and Associates Conclusions Source Code and Expressions B
Comments
s = oy
- - . . L (3 & h.
Section 4.7 The Visual Parsing of Expressions .

.
‘l"
.

T:‘l'l

’.
Iy

One of the most difficult aspects of the detailed reading of a com-
puter program occurs in the attempt to parse a complex (arithme-
tic or logical) expression. This is particularly true in the program-
ming language C, where 46 different operators occur at 16 levels
of precedence, some associating left to right, others associating
right to left [Harbison & Steele, 1984]). Current methods of pro-
gram visualization provide little help to the reader trying to deci-
pher an expression other than the explicit indication of nesting
and grouping through the inclusion of parentheses. The resulting
visual clutter and masking of what is essential is readily apparent
in languages such as LISP.

':l .

A

-

5

F
" Satet

o
1.9

We considered or experimented with various methods of using
typographic attributes to enhance the legibility and readability of
complex C expressions. These typographic techniques included:

— Use of ligatures, kerning, and other controls over letter spacing
1o bind tokens together more tightly.

— Controls over word spacing.

— Variations of the point size of operators.

— Variations of the weight of operators.

— Control over the vertical placement of unary operators.

— Variations in the point size of parentheses.

e e ———————— TV P T TS T NV AR 8.4

— Use of light square under-brackets or other diagrammatic nota-
tions.

— Explicit intreduction of line breaks.

— Control over the vertical placement of phrases.

ol B e - 3 Cd 0 e . . o L "y Pl e o
G180y s KR GRS CRETS s % ORI 43> ORI .\-' A‘\

i 5
. . o LASt N ot Lt LT TR ey B o At = RN N PR
BT AT AP NOIDTE RV S PR E W GO WA R wAE P I SRS ST W S S e

TN Ak AR T
A fpt g el

Program Visualization Project
Human Computing Resources
Aaron Marcus and Associates

Final Report: Chapter 4: Section 4.8: Page 47
Theory, Results, Graphic Design of C The Visual Parsing of
Conclusions Source Code and Statements

Comments

Section 4.8
T ——

The Visual Parsing of Statements
fr ot o B R e e s BTt Lo, S o B U S R N R

Another vital carrier of the meaning of a program is the syntactic
structure of program statements. Statements within a typical C
program may nest recursively. At any level, statements such as

the if, do...while, and switch contain several component expres-
sions or statements that must be parsed and understood in order that
the statement as a whole may be understood. The resulting confi-
guration of separate and nested statements presents a challenge to
effective spatial structuring.

We considered or experimented with various methods of applying
visible language attributes to enhance a reader’s ability to parse
complex C statements. These attributes included:

— The amount of indentation used in visually encoding the nesting
of phrases within statements, for example, 1, 2 or 3 picas for
each level of indentation.

— If there are more than 3 or 4 levels of indentation, clustering of 3
or 4 adjacent levels into groups, distinguishing the groups by
larger indentations, rules, leader lines, gray screen tints, or other
visual devices. The indentation of a group could be, for
example, 8, 10, or 12 picas from the left margin of the preceding
group.

— The horizontal position of a left brace, e.g., all the way to the
left, hierarchically aligned with the text on the “current line", at
the end of the text on the “previous line”, and all the way to the
right. In the cases of positioning braces in a channel of their
own to the left or the right, the braces can be indented within
the channel various amounts to encode the hierarchy level.

— The vertical position of the left brace, e.g.. the “previous line",
between the previous line and the “current line”, or the current
line.

— The horizontal position of a right brace, e.g.. all the way to the
left, at the end of the text on the “current line"”, and all the way
to the right. In the cases of positioning braces in a channel of
their own to the left or the right, the braces can be indented
within the channel various amounts to encode the hierarchy
level.

— The vertical position of the right brace, e.g., the “current line”,
between the current line and the “next line”, or the next line.

— Removal of braces altogether, thereby relying upon precise

LR -_‘...\'-‘-“-' '.-‘

5,
.

. oy
PRSPl RV A ol ey AR P T e

SAAAA .
._1.:\)\;_

o
Cal o
L

N
Y

I<'

e Fa
[]
"

]
ot

o
Y

v,

R
ﬁ'_'-:r %%
e

a7,
W,
ney

»
-

.
3

“w

%
L A

e 2 .
Fhye e

AT S
-.{n.'J s

Program Visualization Project Final Re porv Chaper 4 Secrion 4.8 1'age 4%
{luman Computing Resources Theors . Resubs. Graphic Design ol C The Visual Parsing of
Aaron Marcus and Associales Conclusions Source Code and Statements

Comments

indentation only to encode visual hierarchy. Alternatively,
replacement of braces with a new diagrammatic notation using
arrows, pointing symbols, nested brackets, parallel vertical
lines, or channels of varying gray value.

N

~

E

Suppression of line breaks normally introduced where state-
ments are very short.

P ik

— Placement of line breaks according to various rules and heuris-
tics, for example, where the line “runs off the edge”, before or
after an operator of low precedence such as “||” or *,”, or such

- as to create a set of “similar” lines.

— The amount of indentation used after a line break, in various
increments finer than the amount of indentation used to encode
new levels.

T

— The amount of line spacing used between segments of a broken
line, starting with the standard line spacing and decreasing it
slightly by one or two points.

— The use of various diagrammatic notations to indicate continu-
ity with segments of a broken line, such as arrows, ellipses, or
regions of gray value.

g
e o &

— The use of various diagrammatic notations such as pointing fig-
ures to indicate "“unusual” control constructs. A definition of
this concept for C might be any label, any goto statement, any
continue statement, any break statement not at the end of a
case, any statement ending a case that is not a break state-
ment, and any return statement not at the end of a function defi-

™ nition.

RS l' l.

0. -

o

» i

A a oa oA 0

Program Visualization Project
Human Computing Resources
Aaron Marcus and Associates

Final Report: Chaprer 4 Section 4.9; Page 49
Theory. Results. Graphic Design of C The Presentation of
Conclusions Source Code and Function Delinitions

Comments

Section 4.9
RS e

The Presentation of Function Definitions
A R NPT 5 . L SRR g =~ s NP i

We also had to develop mechanisms to highlight the program’s
constituent structure in terms of its internally defined functions.
The presence of functions help determine for the reader the gen-
eral sequence and rationale for the program’s structure. Making
these major “chunks” of the program immediately accessible can
contribute significantly to the program’s readablility. We consid-
ered or experimented with the following techniques:

— Use of pagination to minimize the splitting of function defini-
tions across page boundaries in ways that result in placing
most of the text on one page and only a few lines on a subse-
quent page.

— Use of rules of varying weights under the declaration of the
function name and formal parameter list.

— Use of rules of varying weights under the last declaration of a
formal parameter.

— Use of headlines for the declaration of the function name and
formal parameter list.

— Placement of the type of the value returned by the function. if
any, on a line separate from the function name and formal
parameter list.

D
P}

~voere:

e

e mh Jb A e

1

TGS

TE

b2 .l

s
'\"

4
AS
>
~
—
e

LA

Program Visualization Project
Human Computing Resources
Aaron Marcus and Associates

Final Report: Chaper 4, Section 4.10: Page SO

Theory, Results. Graphic Design of C The Preseniation of
Conclusions Source Code and Program Structure
Comments

Section 4.10
A ——

The Presentation of Program Structure
e e R I, o S e T A e g e o e

A C program consists of one or more C source files. Each source
file contains a portion of the entire C program, some number of
top-level-declarations. These top-level-declarations are either dec-
larations of identifiers used in the program or function definitions
elaborating the meaning of new C procedural constructs called
functions by defining them in terms of existing C constructs.

SEE, the visual C compiler, produces a listing of a file with respect
to a set of included external files binding the external references.
These included header files typically contain declarations of identif-
iers, functions, manifest constants, and new defined types. The
declared functions are often defined in “standard libraries” which
are stored on the system and which contain functions generally use-
ful to all C programmers.

We considered or experimented with the following techniques:

— Highlighting the global variables by a variety of typographic
methods as in Section 4.4.

— The use of a novel mechanism to aid the reading of complex pro-
grams structured as a collection of files by adding to each pro-
gram page footnotes that contain cross-references indicating
where in an included file an external identifier is defined and
where each identifier defined on a page is used. This produces,
in essence, a cross-reference listing distributed throughout the
entire program on pages where it is relevant.

- - -

- - Ll al " ™ "
A N S - ", arimt sl gl e TR Lk s e T T s
m". . ".‘l'}.'}} .'.".}:\k ..l-.\\hx.-\ L‘r-.‘b‘.‘-q.\{\'..‘.' 2 O Gt o R R S e ¥ T i e a e T e

Program Visualization Project Final Report: Chapter §: Page 5t

Human Computing Resources Theory, Results, Conclusions
Aaron Marcus and Associates Conclusions

[]
Chapter 5 Conclusions

The previous chapters have presented a classification of issues
affecting program legibility and readability. We have seen that
there are complex interactions of visible language attributes both
among themselves and in relation to the C programming lan-
guage. Despite this, the task of developing a recommended form
has proven to be tractable, and we have been able to do many
experimental variations before suggesting an optimum appear-
ance.

Based on our work, we believe that a comprehensive, consistent,
and effective presentation of a graphic design schema for the
appearance of C is desirable to improve program legibility and
readability, that we have demonstrated the feasibility of develop-
ing such a schema, and that a graphic design manual for the visi-
ble language characteristics is an appropriate vehicle in which to
present the resulting recommended conventions. As more pro-
grammers use the conventions, as they are refined and improved
through this use, and as more human factors knowledge about
program literature becomes available, the conventions will mature
into effective standards.

In achieving this set of objectives, we have also encountered
many unforeseen conceptual and technical difficulties. When we
began our project, we originally desired a solution for the general
problem of typographic and non-typographic representation of
programming languages for formats that were both static and
those that were dynamic i.e.. in an interactive environment. We
soon realized that even the more restricted problem of determin-
ing static, typographic representations was a challenge. At the
time, a wide variety of laser printer fonts of high quality was not
readily available, and it was difficult to create even manually
composed pages. We have also had to combat a great deal of

[e R e o

A -

N additional recalcitrant technology (see Chapter 6). 3:

k :‘- s il
2 The approach and many of the concrete recommendations for C i ._-~Z_".-4
= can be transferred to other languages, such as Pascal and Ada. ta
- We must advise those attempting such designs, however, that the

Ly task will require extremely careful attention to each language’s

b2 unique characteristics. By studying these characteristics, it will

be possible to design effective visualizations that take advantage
of visible language and of the computer language's full potential.

L U e |
:.. l- v- -‘, ‘. "

+
3

.
R T S T S AT Tt 7 BV S S Rt o, Tt % 8
] =gt Y . 5 RS S R O
NG A S T . L R s, L8
5 i A L R R - N e

5 ek % Vi T L ST L
S e B e PO RA T 2 AN
5

i n s W

=

) T nd ey il sl i S] .

RN L T 0 N - .
PR IR O S NPT S PR AT R L N ATy ERR S .
kil il o

P,

S NN

bl " ! iy] '
g i st o V0 5 S gl il e B Bl g T it g R WL L ."u_"'-u'-; a

= v g il FLP %
i L L PR LR O SR

Program Visualization Project
Human Computing Resources
Aaron Marcus and Associates

Final Report: Chapter §: Page 52
Theory. Results, Conclusions
Conclusions

One of the primary difficulties encountered in making graphic
design evaluations is that our knowledge of detailed reading
motivations and strategies in programmers is limited (see Chapter
6). As aresult, it is not yet possible to base decisions among
approximately equivalent appearances on any scientific criteria.
Nevertheless, we believe that our general methodology is sound.
and that our results are significant improvements.

Were we to have merely designed unique prototypes for improve-
ment, this would have had some value. However, we have gone
beyond this to provide a tool for generating automatically
improved appearance for most C programs. In addition, because

it is likely that our conventions will change over the coming

years, we have also provided a flexible tool for editing and refin-
ing the appearance of these automatically produced program
visualizations. Our SEE compiler is one of the most elaborately
tunable visible language processing engines available, building as it
does both upon the technology of the Portable C Compiler [Johnson,
1979] and upon all of TROFF's text manipulation capabilities. We
have pushed these tools as far as they can go in directions for which
they were never intended. Future developers will therefore need to
provide SEE’s functionality (see Volume 6) in a far more appropri-
ate and robust implementation than our prototype.

Thus our approach and our accomplishment have been to design
both the best possible appearance for the C programming language
within technical and time constraints as well as a suitable prototype
of an effective tool for automating, editing, and refining this
appearance.

The details of our future research directions are detailed in the next
chapter.

’
.
4

T S O o e T
§ e bl e o e Y e L e e ol -‘_.h.
B N P - L RO O, R .
S VR RE S R SR R e O

TR LR VR A R Y, e S e e

«

O A M)

=, -“ -"
-..'-_\-_\'

T g
'y ‘.,- '..?’ ?

i
-

-
= ms
RN e
B e e

SR N e) e e Eia =il \ ' e

Program Visualization Project
Human Computing Resources
Aaron Marcus and Associales

Chapter 6: Page 53
Future Research

Final Repori:
Theory, Results,
Conclusions

Chapter 6
L e S

o T T R e e kS, T3 TR P R T - -a . . 2 g
P AT AL A AN "' Ol At VY ity = ..'\- L g k* e = i
X Sy . - R L
t ¥ ¥ -) & "» —- -‘ - J . - n. 5 5
i i Yo Iy BT - 4 GRS RN = & S B .
st e @I T W R (TR R o PR S @ g L T B I e e S R S N T RO W W O, T
SRR R SRR PR SR A A R R AR ST LA P U T P PO RO i A

Future Research

Program Visualization Algorithms

There are a number of area fundamental to the enhanced presenta-
tion of source text that we have not yet automated. These are the
automatic introduction of white space, appropriate automatic line
breaking, appropriate automatic page breaking, incorporation of
programmer formatting intentions, display of pragmatics, display of
diagrammatic representations, and comprehensive automatic wam-
ings and annotations.

Good programmers add blank lines (white space) to enhance the
readability of their code. A program visualizer must do this auto-
matically and correctly. An effective algorithm will note the tran-
sitions between different kinds of program source text, classifying
each line as a comment, a preprocessor command, a component of a
function header, a statement within a function body, a component
of a type definition, and a component of any other kind of declara-
tion. It will then introduce white space between a line of one kind
and a line of another kind. Exactly how much space should be
introduced for each kind of transition, as well as the special cases
not handled by this simple procedure, must be a subject for future
research.

No matter how much space exists for a line on a page, some pro-
grammers will write some statements that will need to be *broken”
and wrapped to the next line. The result is of course ugly (see Fig-
ure 5 of Volume 3), but an appropriate line breaking algorithm.can
minimize the visual chaos and damage that results. An effective
algorithm will scan backwards from the point representing the most
text that will fit on the line, will examine the precedence of the
operators that precede that point, and will try to find an operator of
“relatively low” precedence that is not “too far” from that point as
the place at which to make the break. The algorithm will be com-
plicated by the occurrence of long string constants and will have
particular difficulty with lines that begin very deeply indented.

Automatic page breaking and pagination is an even more difficult
problem. An implementation problem with the current generation
of text formatters (see below) is the need for a great deal of look-
ahead in order to do the page breaking properly. There are also
severe conceptual problems. The basic idea is that there should ide-
ally never be less than three lines in a related “group” of statements

iy 4! v -‘-." ‘ X
3 éi 1 RO
’ ,-.‘ . LR

0 [

ke y '
0T N OO WO O TR R
IR T T T R R R S)

4.8
»

I
XA
ngs
g
e

o)

R
e
154

%4

»

4,
s
o
G

1'.'1"

»*
iy

A
R

v

o &
.

.

L Oyttt
= T
e
e

. i
)

Program Visualization Project Final Report Chapier 6. Page 54
Human Computing Resources Theory, Results. Future Research
Aaron Marcus and Associates Conclusions

at the top or the bottom of the page. The notion of a group here is
related to the concept of the “kind” of source t« «t line defined
two paragraphs above. The algorithm becomes difficult because it
is not always possible to fulfill this condition, because we want to
break the page at a point that is as shallowly nested as possible,
because we want to avoid separating an external or internal com-
ment from the code following it to which it typically refers, and
because we want at almost any cost to avoid breaking in places
such as in the middle of a function header, a typedef definition,
or a structure definition.

An alternate approach to the optimization of line breaking and
page breaking and to the very difficult unsolved problem of the
effective display of initializers is the incorporation of programmer
formatting intentions. In other words, the visualizer should heed
the directions of the programmer when she inserts carriage returns
in the middle of statements, extra carriage returns between state-
ments or function definitions, and tabs or carriage returns in the
middle of expressions or initializers. How to reconcile these speci-
fications with the default automated decisions of the visualizer is a
subject for future research.

Another important topic is the display of pragmatics, features of the
code in use. A good example is the need to know what code has
changed since the last version. An effective algorithm may employ
conventions such as the use of a new font or a gray background to
highlight code that has been added, and a diagrammatic convention
such as a strike-through line to show where code has been deleted
and what has been removed.

We have in our work not yet touched on the possibilities for and
the problems in the automatic generation of effective diagrammatic
representations. There is a rich variety of techniques to be consid-
ered (see, for example, [Martin & McClure, 1985]). Future
research is required to select the most valuable representations, and
to devise algorithms for automatic conversion between source code
and diagram.

Finally, the introduction of fingers pointing at “abnormal” control
flow illustrates the need to develop mechanisms for the automatic
addition of warnings and annotations. Other examples are the con-
ditions currently detected by the LINT program [Johnson, 1978].
These include unusued variables and functions, variables used
before they are set, unreachable parts of the program. and
mismatches between function declarations and uses in terms of the

EREATIFORI T A Bl T o fes S he et i S
. - - . - - 0 - - - B .
e e I T L A e A T et e Tt e Y N T W N T W W W T W Tw—"

Program Visualization Project Final Report: Chapter 6: Page 55
Human Computing Resources Theory, Results, Future Research
Aaron Marcus and Associates Conclusions

the number and types of arguments. Researchers in automatic
programming will be able to propose far more substantive ways in
which a programmer’s assistant can detect features of a program
and write its suggestions on the listing for consideration by the pro-
grammer.

Visualization of other Programming Languages

Our work needs to be extended to programming languages other
than C.

The extension to other ALGOL-like languages, e.g., PASCAL and
ADA, will be straightforward. The most significant area where
some conceptual work may need to be done could be in the effec-
tive representation of multi-tasking in ADA.

Languages for artificial intelligence work, e.g., LISP, PROLOG, and
SMALLTALK, may present a greater challenge. Designers will have
to combat the sea of parentheses presented by LISP and will need to
consider the rich data structures and control flow mechanisms
either directly present in these languages or available through their
many extensions.

Nt
&3

Interactive Enhancements of Source Text

Even more interesting is the extension of this work to the interac-
tive display and manipulation of program source text.

[eg® 2
Bt -

One immediate problem that must be faced is the lower resolution
(typically, no more than 100 dots per inch) of these devices. This
may require modification of many of the techniques that employ a
variety of fonts, styles, and sizes and that employ rules and other
diagrammatic devices.

On the positive side, interactive program visualization offers a host
of new opportunities to incorporate dynamics, animation, color, and
sound. We are no longer faced with the difficult problem of estab-
lishing “the best” mapping between token types and typographic
styles, for the program can be easily re-displayed with different set-
tings. Even more significantly, we can depict through image
dynamics and through animation features of the program in execu-
tion. This is, quite literally, an entire new dimension of program
visualization.

s 3 B N AL B VR . B H s WL T e T S 8 A e 1 . . L
. . St 0, P g LA R a 5 ¥ £ N

- »
Aty : i e, e . R g T
2 ™ ANE . O h Y
. A S
LY \".\',o_"..‘. “k -"__ ‘.-»_. W AN Wy SOLR L g » R & -
I3 VRNV SRS TR SR SE N SR TR T RO E R R R PG AN N AR .:.;_.; St
A st da & e b

T T T T T N T - i e T e AT AT T

Program Visualization Project
Human Computing

Final Report: Chapter 6: Page 56
Theory, Results. Future Researci,
Conclusions

Implementation of Program Visualization Processors

As we have intimated above, there are a great many problems
remaining to be solved before a system such as SEE can be imple-
mented with ease.

As is explained in more detail in Volume 6, SEE was implemented
by making modifications and extensions to the Portable C Com-
piler. This did not result in an appropriate and robust implementa-
tion. Visual compiling is a very different problem from standard
compilation, even though it shares common elements such as the
need to do lexical analysis and the need to do parsing. Future
investigators must therefore develop an appropriate and effective
visual compiler technology.

We have also been handcuffed by the lack of an appropriate docu-
ment formatting technology. The nature of TROFF’s processing of
text makes formatting that requires look-ahead, such as line break-
ing and page breaking, very difficult. Standard TROFF, despite the
fact that it is supposed to be “c.2vice-independent”, is very difficult
to port to new hardware and to new fonts. It is also impossible to
do conversational, interactive document formatting with TROFF; all
text must be processed from the very beginning of the document.
To build the most effective program visualization aids, we require
that research be done on all three of these problems.

As we have indicated, program visualization requires fonts chosen
with great care and attention to the fine detail that occurs in com-
puter program source text. The design of fonts that are optimal for
the display of computer programs rather than English prose is there-
fore another task for future research.

Finally, the design and implementation of interactive visualizers
wil! raise an entirely new set of issues that go beyond those encoun-
tered in this work.

There also remains a broad body of concerns and questions that
relate to the need to substantiate experimentally that the methods
of presentation we propose are effective in making programs more
legible, readable, intelligible, memorable, and maintainable.

We must begin with an investigation into how programmers read, a
characterization of the cognitive and perceptual processes that com-
prise the task. An information processing model of program reading

Program Visualization Project Final Report: Chapter 6: Page 57
Human Computing Resources Theory, Results, Future Research
Aaron Marcus and Associates Conclusions

would greatly assist the design of methods of presentation that
facilitate the act of reading.

We must then try to measure if our display conventions make pro-
grams more legibile, readable, intelligible, memorable, and main-
tainable, and, if so, by how much are these measures improved?

Finally, we must investigate in what ways our methods of presen-
tation are better. What aspects of our conventions are helpful,
which are harmful, and why?

P W A A s
‘-"?"h\ "\u 4“;*-'\-"&., ¥ L fog’
-’

.:'~f Lainr i A
L R B _,m-m N A AR e R s

-s '.'4.'.-.’;-. _-.

Program Visualization Project Final Repont Appendin A Page 58
Human Computing Resources Theory, Results, Hibliographv
Aaron Marcus and Associates Conclusions

PUAPGT
|

Appendix A Bibliography

AT&T Bell Laboratories (1985). The C programmer’s handbook.
U.S.A.: Prentice-Hall Inc.

Baecker, R. & Marcus, A. (1983). Cn ¢nhancing the interface to the
source code of computer programs. Froc. Human Factors in Com-
puting Systems SIGCH! '83), Boston, December 1983, 251-255.

T B e

. Baker. F.T. (1972). Chief programmer team management of pro-
duction programming, /BM Systems Journal, 11(1), 56-73.

o Chaparos, A. (1981). Notes for a federai design manual. Wash-
" ington, D.C.: Chaparos Productions.

Dahl, O.-]., Dijkstra, E.W. & Hoare, C.A.R. (1972). Structured
programming. Londen: Academic Press.

Eco, U. (1976). Theory of semiotics. Bloomington: Indiana Univer-
sity Press.

Gerstner, C. (1978). Compendium for literates. Cambridge: MIT
Press.

Gilb, T. (1976). Software metrics. Studentliteratur, Lund Sweden.

Grogono, P. (1979). On layout, identifiers and semicolons in pascal
programs. SIGPLAN Notices, 14(4), 35-40.

Gustafson, G.G. (1279). Some practical experiences formatting pas-
cal programs. SIGPLAN Notices, [4(9), 42-49.

Gutz, S., Wasserman, A.l. & Spier, M.J. {1981). Personal develop-
ment systems for the professional programmer. Computer, April
1981, 45-53.

Harbison, S.P. & Steele, Jr.. G.L. (1984). C: A reference manual.
Prentice-Hall.

Higgins, D. (1979). Program design and construction. Prentice-
Hall.

Hueras, J. & Ledgard. H. (1977). An automatic formatting program
for pascal. SIGPLAN Notices. 12(7), 82-84.

AL KT 4 S
A R e AR 3 S AL

P s LSS

b % R BV RV TR S WL SR TR R PR LA LR A

- -

Program Visualization Project
Human Computing Resources
Aaron Marcus and Associates

Final Report: Appendix A: Page 59
Theory, Results, Bibliography
Conclusions

..........
..............

.....

Johnson, S.C. (1978). LINT, a C program checker. UNIX
Programmer’s Manual Volume 2.

Johnson, S.C. (1979). A tour through the Portable C Compiler.
UNIX Programmer’s Manual Volume 2.

Kernighan, B. & Plauger, P.J. (1976). Software tools. Addison-
Wesley.

Kernighan, B. & Ritchie, D. (1978). The C programming language.
Prentice-Hall.

Kernighan, B. (1982). A typesetter-independent TROFF. Bel!
Laboratories Computing Science Series Technical Report No. 97,
March 1982.

Leinbaugh, D. (1980). Indenting for the compiler. SIGPLAN
Notices, 15(5), 41-48.

Lions, J. (1977). A commentary on the UNIX operating system.
University of New South Wales, Australia.

Marcus, A. & Baecker, R. (1982). On the graphic design of program
text. Proceedings of Graphics Interface 82,302-311.

Martin, J. & McClure, C. (1985). Diagramming techniques for
analysts and programmers. Englewood Cliffs, NJ: Prentice-Hall,
Inc.

Miara, R.J., Musselman, J.A., Navarro, J.A. & Schneiderman, B.
(1983). Program indentation and comprehensibility. Comm. of the
ACM ,26(11), 861-867.

Nassi, 1. & Schneiderman, B. (1973). Flowcharting techniques for
structured programming. S/GPLAN Notices, 8 (8), 12-26.

Oppen, D.D. (1980). Prettyprinting. ACM Transactions on Pro-
gramming Languages and Systems, 2 (4). 465-483.

Organick, E. & Thomas, J.W. (1974). Computer-generated seman-
tics displays. Proc.iFipP Congress, Applications Volume, §38-902.

Parnas, D.L. (1972). On the criteria to be used in decomposing sys-
tems into modules. Comm. of theACM , 15(12), 1053-1058.

VT VT SRRV Y ST R L T LS NV SV R R R R T R

ST

|

- Y S —— e TR TN N TN Y YV VT Y YL LT L T T Y, YT T .
U
.
.
.
h
a .
3

..(j‘;
'.n-" »

x

o

s

&

s
#

Program Visualization Project
Human Computing Resources
Aaron Marcus and Associates

—_— - - — ——————— — a= — ' ' “‘ a
Final Report. Appendix A: Page 60 't 9 2
Theory, Results. Bibliography b A

Conclusions

-

AT B
3

"
e X
»

e’
SN

Perlis, A., Sayward, F. & Shaw, M. (Eds). (1981). Software mer-
rics: An analysis and evaluation. MI1T Press.

-
L3

L

»
N
hon

»

Perlman, G. & Erickson, T.D. (1983). Graphical abstractions of
technical documents. Visible Language,x v 11 (4), 380-389.

Pike, R. & Presotto, D.L. (1985). Face the nation. Proceedings of

the Summer 1985 Usenix Conference, Portland, Oregon, June
1985, 81-86.

Rose, G.A. & Welsh, J. (1981). Formatted programming languages.
Software -- Practice and Experience, 11,651-669.

Ross, D. (1977). Structured analysis (SA): A language for communi-
cating ideas. 1EEE Transactions on Software Engineering, 3 (1),
16-34.

Rubin, L. (1983). Syntax-directed pretty printing - A first step
towards a syntax-directed editor. IEEE Transactions on Software
Engineering, 9(2), 119-127.

Ruder, E. (1973). Typographie. New York: Hastings House, Visual
Communication Books.

Teitelman, W. (1979). A display oriented programmer’s assistant.
Int. Jour. Man-Machine Studies, 11, 157-187.

Wasserman, A.l. (1981). Turorial: Software development environ-
ments. Los Alamitos, CA: IEEE Computer Society Press.

Weizenbaum, J. (1966). Eliza — A computer program for the study
of natural language communication between man and machine.
Comm. of theACM , 9(1). 36-45.

Wirth, N. (1971). Program development by stepwise refinement.
Comm. of theACM , 14(4), 221-227.

Wirth, N. (1977). Modula: A language for modular multiprogram-
ming. Software--Practice and Experience, 7 (1), 3-35.

Yourdon, E. (1979). Structured walkthroughs. Englewood Cliffs,
NJ: Prentice-Hall.

DISTRIBUTION LIST

arldrosses number
of copies v
Anlrew Thruscicki 25
RADC /COTE
DoX'T
7ANC /e 2
ZRIFFISS AFD JY 13441
2ADT/DAP 2 .
SNITFISS AFD 1Y 13441
ADMITTISTRATOR 2 s
DEF TICH INF OTR
DTIC-DDA e
caAMmON STA EG 5 —_
ALTXANDRIA VA 22334-6145 L
nADC/2RT (A FIDUCCIA) 1 g
GRIFFISS AFT? TY 13441 5
"i@"
g 5
RADT /A 1 r? A
GRIFFISG. AFR MY 13441-5793 P
R
ARG /COTD 1 3 i
BLOG 3. 1001 16 0 o
GRITTIGS AFD NY 13441-577%9 ainTn
AFSSA/3AMI 1
TMSHTICTON DT 27337-5425
AR
G TS
e USAr/siTe 1 §\~ :
PTIGTON D7 20339 a3 DIV
l;'o . .
Ibt:;;
g S A e NS «\ﬁ ot

"-.m-:¢¥nt§@‘iﬁ-:-.: N AT Oy 0 SR N R N e

L% BY 4% IR RS 8 _ " P \.
’\"‘{%ﬁ{zr Beseng o R R S AL T PR, S :.,‘,-_.» 1\(_'{,\ .‘u\"a\.,“ &

DIRZCTOR 1
DMAYUTC

ATT SD5Ii

6593 1rnoknq Lano

"MIIIINISTON DT 23315=T77%34

OASD (23I) INFORMATIOY 3Y3TTIMS 2
RONM 31186
TIANSHINGTON DT 27321=-3749

‘17 ATSZ/CLAN 1
ANDREYS AR DC 27334-3779

AP3C/%XRK 1
\xc?ﬁw" AFR VD 27334-597

SASINRL YeThney Lh AT) 1

3
OFPUTT AT3 NI 673113=37%1

un Bx2 /5127 1
HAPBYTT AT IT 52113-5071

L2 T '.'r"'/vmr.-" 1
ih¢ Pl () -
-y oy
Y] NITONTIO TX 18243=5007)
7 amnfonon 1
AR Anynlg T 70243=53 7
. 1
maog /1100 .
Lh Lo B T P e
LS LAY AR P 27658e 5
- wax e forrmn [menw s s
g g It 1
& whE mopaes UFK WRSEELT | M

DL-2

wzim_mmmm T a e e R e

"N TAC/DOYS 1
LAUGLTY AT VA 23865-5371

HO PAC/DRIC 1
LATGLRY AFR VA 23665-54911

37 TAZ/DROT 1
LANGLSY AFDR VA 23565-5971

0 TAC/DRCD 1
TAIGLEY ARR VA 23665-501

AT3S LIAISON OFFICR 1
LAIGLTY INSIARSH CENTZAR (dASA)

LANSLEY ATB VA 23465-57%9)

WY BSOS 1

AHGLOY ARn v 23065

%y AL figen 1
LAIGLEY . AP UN 23665

~r!'vf‘,/ 1
AT] i «: INANL LINTAYY
CLRrLANG ATE e 891175798

e AR e (anN) 1

Atstn “Zant. “lovask)
TIRAER Y gen gu AN T=TA0]

g g i s 1
4 P o)W TR VAT R P 34 15,'33
DL-3

‘
h‘} 87y ﬂ ‘(Nf.“ﬁ‘.r"gl.i -.P“f ’ - . " .: x "n M T Y, ‘u:',."\)\-‘\ \.’\v * ”f*.').‘)‘f’
.h B kil T 8). vy -.'(-. .,
fﬁﬂ’ﬁz& R e e e ‘a.‘ﬂh."ﬁ AR IS .,S-.‘fh! X 'r"ft i‘ﬁ’i‘:‘i J'

"

Pl S R S

A

G hio vig el big i S gt ik ke e i et L3

ASD/RHAEGT {(JOS1IPI T. NIADFOND)
WRIGHT-PATTERGON AFD 21 45433-653
ASD/TNSID

ATTHN TUCSTNT WOLANSRI
RIGHT=-PATTTIRSON AT O 45433

3D /AXDPM
WRIGHT-PATTIRS0N AFE 071 45433

A3D/AFALC /AXAS
WRIGHT-PATTERSON AR O 45433

A3D/XRS
WRIGHT-PATTIRSON AF3 O'1 45433

APIT/LDEY - TTCHMNICAL LIRRARY
BUILDING 647, ARTA D
VRIGHT-PATTTRSON AR 0i1 45433-5523

AXWAL/MLPO
ATTN BRS Se B RURE
WRIGHT-PATTERION AR 0f] 45433-56533

APWAL/MLTS
W2 IGHT=-PATTIRSON AFR 01 45433

AWML /PINS /S3URVIAC
WRIGHT-PATTARZON AFR OF 45433

AFAMRL /1T
WRIGHT-PATTERSY'T AFB O7] 45433-G573

DL-4

- =Py
o “.‘:fu"‘{\"-n\“.ﬂ'
L N Pl
'1.'- -I".lh -

W

.
¥ .

AFIRL/LRS-TDC 1
YRIGHT=-PATTRRSOT AFR 0O 45433-6523
AsD/B (CRFP) 1

NTETY MR . JEFFERY L. PESLER
TRISUT=PATTIRGNY AFD O 45433

AFIRL/OTS 1
YILLIAMS ARPR AZ 85247-5457

1343815 /710X 1
ERLAR APR (11 968354

AUL/LSE 67-342 1
MAXWILL ATR AL 36112-5564

0 SPAZTCOM/XPYX 1
BT on . WILLIAM R MATOUSH
PTITRGON ATD CO 83914-5971

HE ATE /TTOT 1
JANDOLPI ATB TX 73148

A LS 5 1
RANDOLPY AFR TX 783148

CODE H396RL TECHMUECAL LIBRARY 1
DRFINSS COMMUMICAT IONG

SIUGINTURING CENTER

1869 "TTIUHLI AVNHUE

RESTON VR 22099

COMMAMT) COMTROL AND COMMUNICATIONS DIV 1
DEVELOPISNE SEAFRER
MARINT CORP3 DEVILOPMINT & LDUCATION COMMAND
ARE N cODE DINK
JURNTICD VA 22134
DL-5

e
LD '-'L*-',.'-';-“:'.-:.sﬁ'&‘.';‘
et e T eyt a4 Uiy

AFLMC/LGY
ATTN. CH, SYS5 INGR DIV
GUNTIR AFS AL 36114

COMMANDER

PALLISTIC MISSILE DEFENSS SYSTSM3 COMMAND
ATTY. DACS-BMZ-AJOLIM

PO BOX 1599

HUNTSVILLE AL 35307-3371

CHIST OF NAVAL OPSRATIONS
ATTN OP=941F
WASHINGTON DC 23353-29097

COMMANDING OFFICTR
HAVAL AVIONIZTS C2YTTIR
LIBRARY - D/765
INDIANAPOLIS IV 46213

COMMAIIDING OFFICSR

MAVAL TRAINING TQUIPMINT CZ‘TI
TICHNICAL INFORMATION Z7IT
BUILDING 2958

ORLANDO 7L 312813-7170

COMMANDER
W\VAL OCW\V SYSTEMS CIHT4YR
ATT TOCHUICAL LIBRARY ZODT 9642

SAN DITGO CK 22152-5799

US NAVAL "ISAPONS CSITIR, Z0DT 343
ATTN TICHIICAL LINRARY
CHINA LAKE <A 923555

SUPERINTS'INENT (CODT 1424)
NAVAL POSTSRADUATS "”WOO'
MONTEREY CA 93943-5

SOMMANDLNG Qo Liin

HAVAL RISZSARTI LABORATORY
cons 2627

WASUINGTDNT DT 27375

TAVELEXSYCOM
opE-113=33
WAZATIGTON DT 27363
DL-6

*’5‘5%& b

SRR

A A ST TR TR "'
MRS R h.\o_?:u:i LA ‘S.

"\‘h‘ﬂ$,:n‘ "'\"'.i‘{ o ".n,"\‘)‘ "’ '- ‘-"‘.'.:)-p).,_’v)\
¢ ‘\ Ly CARN -‘..
LS kflh *!r \in':\“&'n.i’n_!‘m Sy

RENDSTONE SCIENTIFIC INFORMATION CENTER 2
US ARMY MISSILE COMMAND

2CDSTONE SCIRNTIFIC INFORMATION CENTEZR

ATTN DRSMI-RPRD

REDSTONT ARSENAL AL 35898-5241

ADVISORY GROUP OM GLRCTRON DEVICES 2
FTS (FRDRRAL COMM SYST=M)

‘ 271 VARICK STREET 1llth FLOOR ;
NEW YORK NY 17714

LO5 ALAMOS STIENTIFIC LAPORATORY 1
ATTY REPORT LIRRARY

MAIL STATION 5092

LOS ALAMOS "M 87545

AIR FTORCHE GLEMEMT (AFSLM) 1
TIZ RAGD CORP

1799 MAIN STREST

SANTA MONICA CA 994096

Commander 1
10 Tort Huachuca

TECH RSP DIV s
ATTN BTS531% BRADFORD
7t Huachneca A% 85613-5990 "

AP TACOM TEST ToAM/T20 1
Attn LT JAMTS GIAVES
PT WACHUCA A7 35635

AZDC LIBRARY (T=C RTPORTS FIL®)
"3=-194
ARNOLD AFS TN 37339-2998

U 5 DEPARTHENT CF TRANSPORTATION LIBRARY 1
™B3=17A STCTION “=493.2, "oom 230
3720 INDEuPENDENCE AVE S.%

34 DC 29591

P

sl

1337 213/217 1
KNISLNR APT M3 39534-6343

T APCT) AL
BLDG P=47 MOATH ™9 J

S20TT APP 1L 62225~

i, G S b LR LR GOy Ry U S e g%
.-._f_\.c%.'.,_r\:r_ P T A .-_;‘w-_c-\ﬂ-a‘r% -,

i § o "'_'.-'\ ',.
OGS CHEREEEETHAELGTY €6 AGTE S LI aTE G

0 AN NN A A A A AT N e e
R f."{"ﬂf‘-' ."#.R‘V‘f?-h:._:._; 3 .‘G"‘._ﬂ:-_:._::._:.;:‘.}‘

ATIS TECHINIZAL LIRRARY
TL4414
TT \FD IL 62225-5438

485 TIS/7INXR (PMD)
SRITFISS AF3 VY 13441-6343

119 =3/XX
HAISCOM ATB

HQ T3D/Xn
"HAI320 \?c

n3D/9%vP
MAN3ZOM AR

235

H'W"CDN A"“ i

Rl al "‘ ron
-

S3D/AL3E

ATTH MO ILLIAM 3 LETSNDN
BLDG 1774. 3™ 276

MAN3ZOM ATE My I1731

I3D/ALST

ATTN CAPTAIY AaT
LDG 1774, " 276
ml-‘ﬂhaf ‘\F'h \l\ <’}1731

730/ALST
\T“' “YTALY J07 ITe
BLDG 1794 21 296
TANSZON AT '] 3173)

DL-8

» ' - L3 -y N ”
e R R R 2
L, "y i

' ?.pf‘ ﬁ'ﬁ’

W 8 17 e

T “MJOR GRORGH JACKELS
BLDG 1734 214 1')7

AANsOeNL AT3 A A1731

25D /1725 -21
ATTT snJon JO3LPU iI. 3C'IHMOLL
IANNSCO AF2 MA 31731

—vnD/mn(—'_ID
ATTH CAPTAIN J. MUYER
HANSCD AFR 1A G1731

DIRTCTOR

xam/c"°

AT 75112 /TOL (MARJORIZ Z. MILLER
FTAOCT S30RGT 5 MIADE MD 27755-6799

DIRELTOR

WBA/255

ATT 1161

rONT GEORGE G M3ZAOT MD 20755-6990

DIRRCTOR
NSA/TSS
ATTT 224

FORT STONGE

Q
-

-
vl
2
o
(%]

MD 29755-6099

prcTon

3A /2553

ATTY. 321

FORT GHONGE G MBADT MD 27755-6093

DIANCTOR

150 /255

RTT 231

FONT 3TONGE G MTADTR MD 20755-5029

NIRRCTOR

I3A /2SS

ATT RS

FONT SRORCE G MTANT MD 20755-60%0

DL-9

DIRZCTOR 1
"15A /255
ATTN 16

FORT GLORGZ G MIADT MD 2G755-533%

(o]

DIRSCTO 1
MSA/CSS
AT 8

FORT 3BORGE

Q)

MZADT MDD 23755=-5997

pL IO 1
li3n/253
ATTN 5331

FORT GEORGR M3ADS MD 23755-G779

Q

DIRTCTOR 1
N5A/CS3
ATTN 21

3
PORT JE0ORGA

MTADS 1D 273755-57397

("

CIRSCTOR 1
NS3A/23S
ATTY V337

HOR!‘H "“'\"" -

€ S s e

Q

vIADT MD 20755-6%77

Aaron Marcus and Associates 5
1196 Euclid Avenue
Berkeley CA

Dol COMPUTTR SUCURITY CnHTHER 1
ATTH 42 TIC

9893 SAVAGT 20AD

FORT G1O7CT 5 "“MADT 1D 23755-639%0

DIRZCTOR 3
MSA/C33

ATT] L=222

PORT 30ONGT G MTADS MD 27755-5T09

Dr Ron CDaccker 5
luman Zo'muting Tasources Corn
1J St 'lary Streot
Toronto. 2ntario
Canada M4Y 1P9
POORIL, COHBLITY ITVIACH 136
DL-10

's G gz ot ."

\q“ f B -\ ".r".,l s AT Yt N J. V) '\}\ AN r\‘,‘- N P ‘-}\ gl

\. \\ ‘(ﬁ\
ﬂLMLJEAMﬂﬁ!ﬁhﬂ&&iﬁﬂ&&iﬁéb\;ﬂﬁu

- . . W ‘!
uis‘m A u\.&'{.-h'i:\' .!,'b. (A0S .a‘). ;"L\, 'pﬁ'x}m“ﬂ rn. uﬁ»..'u

@ 5590 5 90K A 905 9C K 30K 20 9K WA A I XA S o

MISSION
of
Rome Air Development Center

RADC plans and executes neseanch, development, test
and selected acquisition programs im suppont of
Command, Control, Communications and Intelligence
(C31) activities. Technical and engineering
support within aneas of competence 44 provided %o
ESD Program Offices (POs) and other ESD elements

to penform effective acquisdition of C31 systems.
The areas of technical competence include
communications, command and control, battle
management, infoamation processing, surveillance
sensons, 4intelligence data collection and handling,
sclid state sciences, electromagnetics, and
propagation, and electrondic, maintainability,

and compatibility. %
3

T 2 222 2l ol 2 p2-pd prd I pd 2323

'HiS REPORT MAS BEEN DELIMITED
AND CLEARED FOR PUBLIC RELBASE

“~NDER DOD DIRECTiVE 5200,20 AND
NO RESTRICTIONS ARE IMPOSED UPON |
TS USE AND DISCLOSURE, ‘

DISTRIBUTION STATEMENT A

APPROVED FOR PUBLIC RELBASE)
DISTRIBUTION UNLIMITED,

